Jegadeesan GB, Srimathi K, Santosh Srinivas N, Manishkanna S, Vignesh D. Green synthesis of iron oxide nanoparticles using terminalia bellirica and moringa oleifera fruit and leaf extracts: antioxidant, antibacterial and thermoacoustic properties. Biocatal Agric Biotechnol. 2019. https://doi.org/10.1016/j.bcab.2019.101354.
Article
Google Scholar
Zhang L, Dong WF, Sun HB. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications, nanoscale. Royal Soc Chem. 2013. https://doi.org/10.1039/c3nr01616a.
Article
Google Scholar
Wahajuddin AS. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;7:3445–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemine OM, Omri K, Zhang B, El Mir L, Sajieddine M, Alyamani A, et al. Sol-gel synthesis of 8 nm magnetite (Fe 3O 4) nanoparticles and their magnetic properties. Superlattices Microstruct. 2012;52(4):793–9.
Article
CAS
Google Scholar
Chin SF, Suh C, Pang C, Tan H. Green synthesis of magnetite nanoparticles (via thermal decomposition method) with controllable size and shape. Environ Sci. 2011;2(3):299–302.
CAS
Google Scholar
Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, et al. Polyethyleneimine—mediated synthesis of folic acid-targeted iron oxide nanoparticles for invivo tumor MR imaging. Biomaterials. 2013;34(33):8382–92.
Article
CAS
PubMed
Google Scholar
Paiva DL, Andrade AL, Pereira MC, Fabris JD, Domingues RZ, Alvarenga ME. Novel protocol for the solid–state synthesis of magnetite for medical practices. Hyperfine Interact. 2015;232(1–3):19–27.
Article
CAS
Google Scholar
Luo Y, Yang J, Yan Y, Li J, Shen M, Zhang G, et al. RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T1-weighted MR imaging of gliomas. Nanoscale. 2015;7(34):14538–46.
Article
CAS
PubMed
Google Scholar
Jagwani D, Hari KP. Nature’s nano-assets: Green synthesis, characterization techniques and applications–a graphical review. Mater Today Proc. 2021;46:2307–17.
Article
CAS
Google Scholar
Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, et al. Green approaches in synthesising nanomaterials for environmental nanobioremediation: technological advancements, applications, benefits and challenges. Environ Res. 2021. https://doi.org/10.1016/j.envres.2021.111967.
Article
PubMed
PubMed Central
Google Scholar
Yew YP, Shameli K, Miyake M, Ahmad Khairudin NBB, Mohamad SEB, Naiki T, et al. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: a review. Arabian J Chem. 2020. https://doi.org/10.1016/j.arabjc.2018.04.013.
Article
Google Scholar
Hao R, Li D, Zhang J. Green Synthesis of iron nanoparticles using green tea and its removal of hexavalent chromium. Nanomaterials. 2021. https://doi.org/10.3390/nano11030650.
Article
PubMed
PubMed Central
Google Scholar
Mallapragada SK, Brenza TM, McMillan JEM, Narasimhan B, Sakaguchi DS, Sharma AD, et al. Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines. Nanomedicine. 2015. https://doi.org/10.1016/j.nano.2014.12.013.
Article
PubMed
Google Scholar
Patra JK, Baek KH. Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomaterials. 2014. https://doi.org/10.1155/2014/417305.
Article
Google Scholar
Venkateswarlu S, Rao YS, Balaji T, Prathima B, Jyothi NVV. Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mater Lett. 2013;100:241–4.
Article
CAS
Google Scholar
Venkateswarlu S, Kumar BN, Prathima B, SubbaRao Y, Jyothi NVV. A novel green synthesis of Fe 3 O 4 magnetic nanorods using punica granatum rind extract and its application for removal of Pb(II) from aqueous environment. Arab J Chem. 2019;12(4):588–96.
Article
CAS
Google Scholar
Yuvakkumar R, Hong SI. Green synthesis of spinel magnetite iron oxide nanoparticles. Adv Mat Res. 2014. https://doi.org/10.4028/www.scientific.net/AMR.1051.39.
Article
Google Scholar
Venkateswarlu S, Yoon M. Rapid removal of cadmium ions using green-synthesized Fe3O4 nanoparticles capped with diethyl-4-(4 amino-5-mercapto-4H-1,2,4-triazol-3-yl)phenyl phosphonate. RSC Adv. 2015;5(80):65444–53.
Article
CAS
Google Scholar
Venkateswarlu S, Yoon M. Surfactant-free green synthesis of Fe3O4 nanoparticles capped with 3,4-dihydroxyphenethylcarbamodithioate: Stable recyclable magnetic nanoparticles for the rapid and efficient removal of Hg(II) ions from water. Dalt Trans. 2015;44(42):18427–37.
Article
CAS
Google Scholar
Bano S, Nazir S, Nazir A, Munir S, Mahmood T, Afzal M, et al. Microwave-assisted green synthesis of superparamagnetic nanoparticles using fruit peel extracts: surface engineering, T2relaxometry, and photodynamic treatment potential. Int J Nanomedicine. 2016;10(11):3833–48.
Article
Google Scholar
Kumar B, Smita K, Cumbal L, Debut A. Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. J Saudi Chem Soc. 2014;18(4):364–9.
Article
CAS
Google Scholar
Ahmed MJK, Ahmaruzzaman M, Bordoloi MH. Novel averrhoa carambola extract stabilized magnetite nanoparticles: a green synthesis route for the removal of chlorazol black e from wastewater. RSC Adv. 2015;5(91):74645–55.
Article
CAS
Google Scholar
Bahadur A, Saeed A, Shoaib M, Iqbal S, Bashir MI, Waqas M, et al. Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: dielectric, magnetic, thermal and optical studies. Mater Chem Phys. 2017;1(198):229–35.
Article
CAS
Google Scholar
Sathishkumar G, Logeshwaran V, Sarathbabu S, Jha PK, Jeyaraj M, Rajkuberan C, et al. Green synthesis of magnetic Fe3O4 nanoparticles using couroupita guianensis aubl. Fruit extract for their antibacterial and cytotoxicity activities. Artif cells, nanomed Biotechnol. 2018;46(3):589–98.
Article
CAS
Google Scholar
Awwad AM, Salem NM. A green and facile approach for synthesis of magnetite nanoparticles. Nanosci Nanotechnol. 2013. https://doi.org/10.5923/j.nn.20120206.09.
Article
Google Scholar
Senthil M, Ramesh C. Biogenic Synthesis of Fe3O4 Nanoparticles Using Tridax Procumbens Leaf Extract and Its Antibacterial Activity on Pseudomonas aeroginosa. Dig J Nanomater. Bios. 2012;7:1655-60.
Google Scholar
Basavegowda N, Somai Magar KB, Mishra K, Lee YR. Green fabrication of ferromagnetic Fe3O4 nanoparticles and their novel catalytic applications for the synthesis of biologically interesting benzoxazinone and benzthioxazinone derivatives. New J Chem. 2014;38(11):5415–20.
Article
CAS
Google Scholar
Latha N, Gowri M. Bio Synthesis and Characterisation of Fe 3 o 4 Nanoparticles using caricaya papaya leaves extract. International journal of science and research. www.ijsr.net. Accessed Jun 22 2021.
Atarod M, Nasrollahzadeh M, Sajadi SM. Green synthesis of a Cu/reduced graphene oxide/Fe3O4 nanocomposite using Euphorbia wallichii leaf extract and its application as a recyclable and heterogeneous catalyst for the reduction of 4-nitrophenol and rhodamine B. RSC Adv. 2015;5(111):91532–43.
Article
CAS
Google Scholar
Xiao L, Mertens M, Wortmann L, Kremer S, Valldor M, Lammers T, et al. Enhanced in vitro and in vivo cellular imaging with green tea coated water-soluble iron oxide nanocrystals. ACS appl mater interfaces. 2015;7(12):6530–40. https://doi.org/10.1021/am508404t.
Article
CAS
PubMed
Google Scholar
Patra JK, Ali MS, Oh IG, Baek KH. Proteasome inhibitory, antioxidant, and synergistic antibacterial and anticandidal activity of green biosynthesized magnetic Fe3O4 nanoparticles using the aqueous extract of corn (Zea mays L.) ear leaves. Artif Cells Nanomed Biotechnol. 2017;45(2):349–56.
Article
CAS
PubMed
Google Scholar
Rajendran SP, Sengodan K. Synthesis and characterization of zinc oxide and iron oxide nanoparticles using sesbania grandiflora leaf extract as reducing agent. J Nanosci. 2017;2017:1–7.
Article
CAS
Google Scholar
Kumar B, Garcia M, Murakami JL, Chen C-C. Exosome-mediated microenvironment dysregulation in leukemia. Biochim biophys acta mol cell res. 2016;1863(3):464–70.
Article
CAS
Google Scholar
Sirdeshpande KD, Sridhar A, Cholkar KM, Selvaraj R. Structural characterization of mesoporous magnetite nanoparticles synthesized using the leaf extract of calliandra haematocephala and their photocatalytic degradation of malachite green dye. Appl Nanosci. 2018;8(4):675–83.
Article
CAS
Google Scholar
Kanagasubbulakshmi S, Kadirvelu K. Green synthesis of Iron oxide nanoparticles using lagenaria siceraria and evaluation of its antimicrobial activity. Def Life Sci J. 2017;2(4):422.
Article
Google Scholar
Narayanan S, Sathy BN, Mony U, Koyakutty M, Nair SV, Menon D. Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl Mater Interfaces. 2012;4(1):251–60.
Article
CAS
PubMed
Google Scholar
Venkateswarlu S, Natesh Kumar B, Prasad CH, Venkateswarlu P, Jyothi NVV. Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using syzygium cumini seed extract. Phys B Condens Matter. 2014;15(449):67–71.
Article
CAS
Google Scholar
Cai Y, Shen Y, Xie A, Li S, Wang X. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe 3O4 nanoparticles. J Magn Magn Mater. 2010;322(19):2938–43.
Article
CAS
Google Scholar
Ngernpimai S, Thomas C, Maensiri S, Siri S. Stability and cytotoxicity of well–dispersed magnetite nanoparticles prepared by hydrothermal method. Adv Mat Res. 2012. https://doi.org/10.4028/www.scientific.net/AMR.506.1.
Article
Google Scholar
Phumying S, Labuayai S, Thomas C, Amornkitbamrung V, Swatsitang E, Maensiri S. Aloe vera plant–extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Appl Phys A Mater Sci Process. 2013;111(4):1187–93.
Article
CAS
Google Scholar
Mahdavi M, Namvar F, Bin AM, Mohamad R. Green biosynthesis and characterization of magnetic iron oxide (Fe 3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 2013;18(5):5954–64.
Article
PubMed
PubMed Central
Google Scholar
Yew YP, Shameli K, Miyake M, Kuwano N, Bt Ahmad Khairudin NB, Bt Mohamad SE, et al. Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed extract. Nanoscale Res Lett. 2016. https://doi.org/10.1186/s11671-016-1498-2.
Article
PubMed
PubMed Central
Google Scholar
El-Kassas HY, Aly-Eldeen MA, Gharib SM. Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: characterization and application for lead bioremediation. Acta Oceanol Sin. 2016;35(8):89–98. https://doi.org/10.1007/s13131-016-0880-3.
Article
CAS
Google Scholar
Niraimathee VA, Subha V, Ernest Ravindran RS, Renganathan S. Green synthesis of iron oxide nanoparticles from mimosa pudica root extract. Int J Environ Sustain Dev. 2016;15(3):227–40.
Article
Google Scholar
Buazar F, Baghlani-Nejazd MH, Badri M, Kashisaz M, Khaledi-Nasab A, Kroushawi F. Facile one-pot phytosynthesis of magnetic nanoparticles using potato extract and their catalytic activity. Starch–Stärke. 2016;68(7–8):796–804. https://doi.org/10.1002/star.201500347.
Article
CAS
Google Scholar
Lunge S, Singh S, Sinha A. Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater. 2014;1(356):21–31.
Article
CAS
Google Scholar
Khandanlou R, Bin Ahmad M, Shameli K, Kalantari K. Synthesis and characterization of rice straw/Fe3O4 nanocomposites by a quick precipitation method. Molecules. 2013;18(6):6597–607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khataee A, Kayan B, Kalderis D, Karimi A, Akay S, Konsolakis M. Ultrasound-assisted removal of Acid Red 17 using nanosized Fe3O4-loaded coffee waste hydrochar. Ultrason Sonochem. 2017;1(35):72–80.
Article
CAS
Google Scholar
Khan MY, Mangrich AS, Schultz J, Grasel FS, Mattoso N, Mosca DH. Green chemistry preparation of superparamagnetic nanoparticles containing Fe3O4 cores in biochar. J Anal Appl Pyrolysis. 2015;1(116):42–8.
Article
CAS
Google Scholar
Horst MF, Coral DF, Fernández van Raap MB, Alvarez M, Lassalle V. Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments. Mater Sci Eng C. 2017. https://doi.org/10.1016/j.msec.2016.12.035.
Article
Google Scholar
Anand K, Tiloke C, Phulukdaree A, Ranjan B, Chuturgoon A, Singh S, et al. Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties. J Photochem Photobiol B Biol. 2016;165:87–95.
Article
CAS
Google Scholar
Anwar F, Latif S, Ashraf M, Gilani AH. Moringa oleifera: A food plant with multiple medicinal uses. Phyther Res. 2007;21(1):17–25.
Article
CAS
Google Scholar
Tiloke C, Anand K, Gengan RM, Chuturgoon AA. Moringa oleifera and their phytonanoparticles: potential antiproliferative agents against cancer. Biomed Pharmacother. 2018. https://doi.org/10.1016/j.biopha.2018.09.06.
Article
PubMed
Google Scholar
Huang J, Qian W, Wang L, Wu H, Zhou H, Wang AY, et al. Functionalized milk-protein-coated magnetic nanoparticles for MRI-monitored targeted therapy of pancreatic cancer. Int J Nanomedicine. 2016;7(11):3087–99.
Google Scholar
Aisida SO, Ugwu K, Akpa PA, Nwanya AC, Nwankwo U, Bashir AKH, et al. Synthesis and characterization of iron oxide nanoparticles capped with Moringa Oleifera: the mechanisms of formation effects on the optical, structural, magnetic and morphological properties. Mat Today Proc. 2019. https://doi.org/10.1016/j.matpr.2020.03.167.
Article
Google Scholar
Ali I, Peng C, Naz I, Khan ZM, Sultan M, Islam T, et al. Phytogenic magnetic nanoparticles for wastewater treatment: a review. RSC Adv. 2017;7(64):40158–78.
Article
CAS
Google Scholar
Stephen Inbaraj B, Chen BH. Nanomaterial–based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal. 2016. https://doi.org/10.1016/j.jfda.2015.05.001.
Article
PubMed
Google Scholar
Rochelle M. Cornell US. The Iron Oxides: Structure, Properties, Reactions, Occurrences and uses, 2nd, completely revised and extended edition. 2006;703: https://www.wiley.com/en-us/The+Iron+Oxides%3A+Structure%2C+Properties%2C+Reactions%2C+Occurrences+and+Uses%2C+2nd%2C+Completely+Revised+and+Extended+Edition-p-9783527606443%0A. https://www.wiley.com/en-in/The+Iron+Oxides:+Structure,+Properties,+Reactions
Ahmad S, Riaz U, Kaushik A, Alam J. Soft template synthesis of super paramagnetic Fe 3O 4 nanoparticles a novel technique. J Inorg Organomet Polym Mater. 2009;19(3):355–60.
Article
CAS
Google Scholar
Al-Asmari AK, Albalawi SM, Athar MT, Khan AQ, Al-Shahrani H, Islam M. Moringa oleifera as an Anti-Cancer Agent against breast and colorectal cancer cell lines. PLoS ONE. 2015;10(8):e0135814.
Article
PubMed
PubMed Central
CAS
Google Scholar
Isaac RSR, Sakthivel G, Murthy C. Green synthesis of gold and silver nanoparticles using averrhoa bilimbi fruit extract. J Nanotechnol. 2013. https://doi.org/10.1155/2013/906592.
Article
Google Scholar
Savi M, Rossi S, Bocchi L, Gennaccaro L, Cacciani F, Perotti A, et al. Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. Part Fibre Toxicol. 2014. https://doi.org/10.1186/s12989-014-0063-3.
Article
PubMed
PubMed Central
Google Scholar
Huang CC, Tsai CY, Sheu HS, Chuang KY, Su CH, Jeng US, et al. Enhancing transversal relaxation for magnetite nanoparticles in mr imaging using Gd3+-chelated mesoporous silica shells. ACS Nano. 2011;5(5):3905–16.
Article
CAS
PubMed
Google Scholar
Ebadi M, Saifullah B, Buskaran K, Hussein MZ, Fakurazi S. Synthesis and properties of magnetic nanotheranostics coated with polyethylene glycol/5-fluorouracil/layered double hydroxide. Int J Nanomedicine. 2019;14:6661–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attari E, Nosrati H, Danafar H, Kheiri MH. Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier. J Biomed Mater Res A. 2019;107(11):2492–500.
Article
CAS
PubMed
Google Scholar
Javanbakht T, Laurent S, Stanicki D, Wilkinson KJ. Relating the surface properties of superparamagnetic iron oxide nanoparticles (SPIONS) to their bactericidal effect towards a biofilm of streptococcus mutans. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0154445.
Article
PubMed
PubMed Central
Google Scholar
Yildiz I, Shukla S, Steinmetz NF. Applications of viral nanoparticles in medicine. Curr Opin Biotechnol. 2011. https://doi.org/10.1016/j.copbio.2011.04.020.
Article
PubMed
PubMed Central
Google Scholar