Aguirre AA, Longcore T, Barbieri M, Dabritz H, Hill D, Klein PN, et al. The one health approach to toxoplasmosis: epidemiology, control, and prevention strategies. EcoHealth. 2019;16:378–90.
Article
Google Scholar
Dubey JP. Bradyzoite-induced murine toxoplasmosis: stage conversion, pathogenesis, and tissue cyst formation in mice fed bradyzoites of different strains of Toxoplasma gondii. J Eukaryot Microbiol. 1997;44:592–602.
Article
CAS
Google Scholar
Jeffers V, Tampaki Z, Kim K, Sullivan WJ. A latent ability to persist: differentiation in Toxoplasma gondii. Cell Mol Life Sci CMLS. 2018;75:2355–73.
Article
CAS
Google Scholar
Dubey JP, Lindsay DS, Speer CA. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev. 1998;11:267–99.
Article
CAS
Google Scholar
Coppin A, Dzierszinski F, Legrand S, Mortuaire M, Ferguson D, Tomavo S. Developmentally regulated biosynthesis of carbohydrate and storage polysaccharide during differentiation and tissue cyst formation in Toxoplasma gondii. Biochimie. 2003;85:353–61.
Article
CAS
Google Scholar
Guérardel Y, Leleu D, Coppin A, Liénard L, Slomianny C, Strecker G, et al. Amylopectin biogenesis and characterization in the protozoan parasite Toxoplasma gondii, the intracellular development of which is restricted in the HepG2 cell line. Microbes Infect Inst Pasteur. 2005;7:41–8.
Article
Google Scholar
Uboldi AD, McCoy JM, Blume M, Gerlic M, Ferguson DJP, Dagley LF, et al. Regulation of starch stores by a Ca(2+)-dependent protein kinase is essential for viable cyst development in Toxoplasma gondii. Cell Host Microbe. 2015;18:670–81.
Article
CAS
Google Scholar
Sugi T, Tu V, Ma Y, Tomita T, Weiss LM. Toxoplasma gondii requires glycogen phosphorylase for balancing amylopectin storage and for efficient production of brain cysts. mBio. 2017;8:e01289-17.
Article
Google Scholar
Ray WJ, Peck EJ. 12 phosphomutases. In: Boyer PD, editor. The enzymes. Academic Press; 1972. p. 407–77.
Google Scholar
ToxoDB. https://toxodb.org/toxo/app. Accessed 17 Dec 2021.
Matthiesen SH, Shenoy SM, Kim K, Singer RH, Satir BH. A parafusin-related Toxoplasma protein in Ca2+-regulated secretory organelles. Eur J Cell Biol. 2001;80:775–83.
Article
CAS
Google Scholar
Pittman KJ, Aliota MT, Knoll LJ. Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection. BMC Genom. 2014;15:806.
Article
Google Scholar
Matthiesen SH, Shenoy SM, Kim K, Singer RH, Satir BH. Role of the parafusin orthologue, PRP1, in microneme exocytosis and cell invasion in Toxoplasma gondii. Cell Microbiol. 2003;5:613–24.
Article
CAS
Google Scholar
Liu L, Tucker SC, Satir BH. Toxoplasma PRP1 is an ortholog of parafusin (PFUS) in vesicle scaffold assembly in Ca2+-regulated exocytosis. Eur J Cell Biol. 2009;88:301–13.
Article
CAS
Google Scholar
Saha S, Coleman BI, Dubey R, Blader IJ, Gubbels MJ. Two phosphoglucomutase paralogs facilitate ionophore-triggered secretion of the Toxoplasma micronemes. mSphere. 2017;2:e00521-17.
Article
Google Scholar
Shen B, Brown KM, Lee TD, Sibley LD. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. mBio. 2014;5:e01114-01114.
PubMed
PubMed Central
Google Scholar
Soldati D, Boothroyd JC. Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science. 1993;260:349–52.
Article
CAS
Google Scholar
Fox BA, Bzik DJ. De novo pyrimidine biosynthesis is required for virulence of Toxoplasma gondii. Nature. 2002;415:926–9.
Article
CAS
Google Scholar
Ufermann C-M, Müller F, Frohnecke N, Laue M, Seeber F. Toxoplasma gondii plaque assays revisited: Improvements for ultrastructural and quantitative evaluation of lytic parasite growth. Exp Parasitol. 2017;180:19–26.
Article
CAS
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH image to imageJ: 25 years of image analysis. Nat Method. 2012;9:671–5.
Article
CAS
Google Scholar
Weiss LM, Laplace D, Takvorian PM, Tanowitz HB, Cali A, Wittner M. A cell culture system for study of the development of Toxoplasma gondii bradyzoites. J Eukaryot Microbiol. 1995;42:150–7.
Article
CAS
Google Scholar
Sharma J, Rodriguez P, Roy P, Guiton PS. Transcriptional ups and downs: patterns of gene expression in the life cycle of Toxoplasma gondii. Microbes Infect. 2020;22:525–33.
Article
CAS
Google Scholar
Harb OS, Roos DS. ToxoDB: functional genomics resource for Toxoplasma and related organisms. Method Mol Biol Clifton NJ. 2020;2071:27–47.
Article
CAS
Google Scholar
Abdelbaset AE, Fox BA, Karram MH, Ellah MRA, Bzik DJ, Igarashi M. Lactate dehydrogenase in Toxoplasma gondii controls virulence, bradyzoite differentiation, and chronic infection. PLoS ONE. 2017;12:e0173745.
Article
Google Scholar
Mouveaux T, Oria G, Werkmeister E, Slomianny C, Fox BA, Bzik DJ, et al. Nuclear glycolytic enzyme enolase of Toxoplasma gondii functions as a transcriptional regulator. PLoS ONE. 2014;9:e105820.
Article
Google Scholar
Garfoot AL, Cervantes PW, Knoll LJ. Transcriptional analysis shows a robust host response to Toxoplasma gondii during early and late chronic infection in both male and female mice. Infect Immun. 2019. https://doi.org/10.1128/IAI.00024-19.
Article
PubMed
PubMed Central
Google Scholar
Sidik SM, Huet D, Ganesan SM, Huynh M-H, Wang T, Nasamu AS, et al. A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes. Cell. 2016;166:1423-1435.e12.
Article
CAS
Google Scholar
Waldman BS, Schwarz D, Wadsworth MH, Saeij JP, Shalek AK, Lourido S. Identification of a master regulator of differentiation in Toxoplasma. Cell. 2020;180:359-372.e16.
Article
CAS
Google Scholar
Imada M, Kawashima S, Kanehisa M, Takeuchi T, Asai T. Characterization of alpha-phosphoglucomutase isozymes from Toxoplasma gondii. Parasitol Int. 2010;59:206–10.
Article
CAS
Google Scholar
Levin S, Almo SC, Satir BH. Functional diversity of the phosphoglucomutase superfamily: structural implications. Protein Eng Des Sel. 1999;12:737–46.
Article
CAS
Google Scholar
Shukla A, Olszewski KL, Llinás M, Rommereim LM, Fox BA, Bzik DJ, et al. Glycolysis is important for optimal asexual growth and formation of mature tissue cysts by Toxoplasma gondii. Int J Parasitol. 2018;48:955–68.
Article
CAS
Google Scholar
Buchholz KR, Bowyer PW, Boothroyd JC. Bradyzoite pseudokinase 1 is crucial for efficient oral infectivity of the Toxoplasma gondii tissue cyst. Eukaryot Cell. 2013;12:399–410.
Article
CAS
Google Scholar
Watts E, Zhao Y, Dhara A, Eller B, Patwardhan A, Sinai AP. Novel approaches reveal that Toxoplasma gondii bradyzoites within tissue cysts are dynamic and replicating entities in vivo. mBio. 2015;6:e01155-01115.
Article
CAS
Google Scholar