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Abstract 

Objectives Investigating protein-DNA interactions is imperative to understanding fundamental concepts such as cell 
growth, differentiation, and cell development in many systems. Sequencing techniques such as ChIP-seq can yield 
genome-wide DNA binding profiles of transcription factors; however this assay can be expensive, time-consuming, 
may not be informative for repetitive regions of the genome, and depend heavily upon antibody suitability. Combin-
ing DNA fluorescence in situ hybridization (FISH) with immunofluorescence (IF) is a quicker and inexpensive approach 
which has historically been used to investigate protein-DNA interactions in individual nuclei. However, these assays 
are sometimes incompatible due to the required denaturation step in DNA FISH that can alter protein epitopes, hin-
dering primary antibody binding. Additionally, combining DNA FISH with IF may be challenging for less experienced 
trainees. Our goal was to develop an alternative technique to investigate protein-DNA interactions by combining RNA 
FISH with IF.

Results We developed a hybrid RNA FISH-IF protocol for use on Drosophila melanogaster polytene chromosome 
spreads in order to visualize colocalization of proteins and DNA loci. We demonstrate that this assay is sensitive 
enough to determine if our protein of interest, Multi sex combs (Mxc), localizes to single-copy target transgenes 
carrying histone genes. Overall, this study provides an alternative, accessible method for investigating protein-DNA 
interactions at the single gene level in Drosophila melanogaster polytene chromosomes.
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Introduction
The relationships between a DNA locus and the pro-
teins that target that locus affect fundamental processes 
such as DNA replication, transcription, and repair [1]. 
A common technique used to investigate protein-DNA 
localization is ChIP-seq, which captures positional infor-
mation of proteins across the genome. However, ChIP-
seq involves several caveats: it is expensive, it requires 

access to sequencing platforms [2], and it is difficult to 
perform by inexperienced users. As an alternative to 
ChIP-seq, investigators utilize microscopy to reveal pro-
tein localization [3], monitor biochemical interactions 
between proteins and DNA [4], and quantify binding 
mechanisms that lead to the formation of protein-DNA 
complexes [5]. To confirm whether a protein of interest is 
targeting a specific genomic locus, investigators have his-
torically combined DNA fluorescent in situ hybridization 
(DNA FISH) with protein immunofluorescence (IF) [6, 
7]. However, the protocol for DNA FISH is often incom-
patible with protein immunohistochemistry; it involves 
a DNA denaturation step that can reverse chemical 
crosslinks and denature protein epitopes, thus hindering 
primary antibody binding [8–10].
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Combining DNA FISH with IF on Drosophila poly-
tene chromosomes is a historically invaluable method for 
cytological analysis. Polytene chromosomes are formed 
through repetitive cycles of DNA endoreduplication 
without nuclear division. These polyploid cells can con-
tain up to 1024 copies of the genome [11]. This amplifi-
cation of the genome gives rise to defined chromosomal 
banding patterns that represent chromatin regions and 
allows investigators to analyze relatively high-resolution 
protein binding patterns [12, 13]. Although researchers 
have applied DNA FISH and IF on polytenes in the past 
[6], the aforementioned incompatibility presents a need 
for an alternative method to investigate protein-DNA 
interactions. To address this need, we developed a hybrid 
RNA FISH-IF method that indirectly marks genes on 
Drosophila polytene chromosomes. Unlike DNA FISH, 
RNA FISH identifies the RNA transcripts that surround 
its parent gene [14], thus providing indirect genomic 
locus information. As RNA is single-stranded, RNA FISH 
does not require a denaturation step [15], which renders 
it more compatible with immunohistochemistry and 
more accessible for less-experienced trainees than DNA 
FISH.

We tested the ability of RNA FISH probes to mark 
genomic loci on polytene chromosomes, determined if 
single molecule RNA (smRNA) probes hybridize to local 
RNA or DNA, and optimized our hybrid RNA FISH-IF 
protocol. We used the D. melanogaster histone gene 
array as our model system. In the wildtype D. mela-
nogaster genome, the endogenous histone locus consists 
of five histone genes arranged in a single histone array 
(HA). Arrays are tandemly repeated ~ 107 times at a 
single locus [16]. We also used engineered fly lines that 
carry transgenes with varying numbers of HAs, where 
even a single HA can attract specific transcription fac-
tors [17, 18]. Notably, this gene array titration allowed 
us to incrementally optimize the sensitivity of our RNA 
FISH-IF hybrid assay towards single-gene detection. We 
verified expected protein-DNA interactions on polytenes 
marked with histone smRNA FISH probes by immu-
nostaining with Multi  sex combs (Mxc), a protein that 
only targets HAs (including both endogenous and trans-
genic HAs) [19–21]. We sought to expand this technique 
for those working with any Drosophila transgene marked 
by reporters, specifically by leveraging smRNA probes 
targeting common markers like mini-white. However, 
we found that most single-copy genes did not give strong 
signal by smRNA FISH, suggesting that transcriptional 
level in salivary gland tissue contributes to detection lim-
its. Overall, we present a protocol for investigating and 
visualizing protein binding at specific genomic locations 
that is inexpensive, quick, and accessible to Drosophila 
investigators at all levels.

Methods
Fly stocks
Drosophila melanogaster fly lines were maintained on 
standard cornmeal-molasses food at 18°C. Third instar 
larvae were used for dissections. Fly stocks were obtained 
from Bloomington Drosophila Stock Center (y,w: stock 
#1495) or as gifts from the Duronio and Marzluff labora-
tories [17, 22].

Antibodies and RNA FISH probes
The following antibodies were used for immunostain-
ing: guinea pig anti-Mxc (1:5000; gift from Duronio and 
Marzluff laboratories); Goat anti-Guinea Pig AlexaFluor 
488 (1:1000) (Invitrogen #A-11073); Goat anti-Guinea 
Pig AlexaFluor 647 (1:1000) (Invitrogen #A-21450). Cus-
tom RNA FISH probe sets were obtained from LGC Bio-
search Technologies using the Stellaris Probe Designer 
version 4.2. All RNA FISH probes used in this procedure 
were coupled to Quasar 570 or Quasar 670 fluorophores.

RNase decontamination
RNase-free reagents were made from DEPC-treated 
water and RNase-free 1X PBS [23]. RNase AWAY (Spec-
trum Chemical MFG Corp #970-66898) was used to 
clean all surfaces and tools and used filtered pipette tips. 
Slide holders were cleaned by washing them in a mixture 
of DEPC-treated water and RNase AWAY.

Sample preparation
Salivary glands were dissected from third instar larvae 
and fixed with three separate fixatives (Fix 1: 4% para-
formaldehyde, 1% Triton X-100 in RNase-free 1X PBS) 
(Fix 2: 4% paraformaldehyde, 50% acetic acid in DEPC-
treated water) (Fix 3: 1:2:3 lactic acid:DEPC-treated 
water:glacial acetic acid) [18] using DEPC-treated rea-
gents and RNase-free materials. Salivary glands were 
transferred to the 1:2:3 fixative (~ 20 µL) on a siliconized 
(RainEX) 22  mm square coverslip surface. A glass slide 
was placed on the coverslip containing the salivary glands 
and third fix and quickly flipped over. Slides were frozen 
in liquid nitrogen and immediately removed their cover-
slips. Slides were briefly stored in RNase-free 1X PBS and 
immediately proceeded with immunohistochemistry.

Immunohistochemistry
Slides were washed in 1% Triton X-100 in RNase-free 1X 
PBS and rocked gently for 10  min. Slides were washed 
twice for 5 min in RNase-free 1X PBS the sample perim-
eter of each slide was marked with an ImmEdge pen 
(Vector Laboratories #H-4000) in between both washes. 
250 µL of blocking solution (0.5% UltraPure BSA (Invit-
rogen #AM2616) in RNase-free 1X PBS) was added to the 
sample area of each slide and the slides were incubated 
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at room temperature in a dark humid chamber for 1  h, 
shaking gently. Using coverslips, slides were incubated 
with 40 µL of diluted primary antibody in blocking solu-
tion overnight in a dark, sealed, humid chamber at 4°C. 
Slides were washed 3 times for 5 min in RNase-free 1X 
PBS. 40ul of diluted secondary antibody in blocking solu-
tion was applied to each slide (including coverslips) and 
slides were incubated for 2 h in a dark humid chamber at 
room temperature. Slides were washed 3 times for 5 min 
in RNase-free 1X PBS. 250 µL of post-fixative (4% para-
formaldehyde in RNase-free 1X PBS) was added to each 
sample area for 3  min at room temperature. Each slide 
was then washed 3 times for 5 min in RNase-free 1X PBS.

RNA FISH
Slides were washed for 5  min in ~ 30  mL Wash Buffer 
(1:10:1 20 × SSC:DEPC-treated water:deionized forma-
mide) at room temperature. 125  µL of Hybridization 
Buffer (100  mg/mL dextran sulfate and 10% formamide 
in 2 × SSC and DEPC-treated water) and diluted RNA 
FISH probe (3 µL of 25 µM probe:120 µL Hybridization 
Buffer) was added to slides (including coverslips) which 
were incubated in a dark, humid, sealed chamber at 37°C 
overnight (~ 16 h). Slides were washed twice for 10 min in 
prewarmed (37°C) Wash Buffer in the dark. 250 µL Wash 
Buffer and diluted DAPI (25  ng/mL DAPI) was added 
onto the sample area and incubated slides in a dark, 

Fig. 1 Histone2b (h2b) RNA FISH (green) on A wildtype (WT; 100 histone arrays), B wildtype with a 12 copy histone array transgene (WT + 12 HA), 
and C wildtype with a single copy histone array transgene (WT + 1 HA) on D. melanogaster polytene chromosomes. DNA is stained with DAPI (red)
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humid chamber at 37°C for 30 min. Slides were mounted 
with ~ 15  µL of VECTASHIELD Antifade Mounting 
Medium (VWR #101098–042) and No. 1.5  coverslips. 
Slides were sealed with nail polish. Slides were immedi-
ately imaged, as we found this gave the strongest FISH 
signal.

Microscopy
A widefield Zeiss AXIO Scope A1 microscope with 
X-Cite 120 LED Boost fluorescent light source and a 
40 × Plan-neofluar 0.75 NA objective paired with ZEN 3.6 
(blue edition) was used for imaging. Zen (.czi) files were 
visualized with ImageJ Version 1.53t.

RNase treatment
After dissecting salivary glands, glands were treated with 
0.1% Triton X-100 for 2 min prior to adding 100 µg/mL 

RNase A (NEB #T3018L) and incubated for 1 h at room 
temperature [24] before fixation.

Results
A high concentration of transcripts surrounds the par-
ent gene locus in many cells. We therefore hypothesized 
that RNA FISH would mark genetic loci on Drosoph-
ila polytene chromosomes. We performed RNA FISH 
on wild-type polytene chromosomes using smRNA 
FISH probe sets against either histone2b (h2b)  or his-
tone3  (h3) transcripts because they are the longest 
histone genes. The endogenous histone locus, which 
carries ~ 100 tandem histone gene arrays [16], is located 
on chromosome 2L near the centromere. Our h2b and 
h3 RNA FISH probe sets effectively targeted this region 
(Fig. 1A, Additional file 1: Fig. S1A). Since most genes 
do not exist in multiple copies, we next performed the 
same RNA FISH assay on transgenic lines carrying HA 

Fig. 2 Histone2b (h2b) RNA FISH (green) and Mxc IF (magenta) on A wildtype (WT; 100 histone arrays), B wildtype with a 12 copy histone array 
transgene (WT + 12 HA), and C wildtype with a single copy histone array transgene (WT + 1 HA) on D. melanogaster polytene chromosomes. DNA 
is stained with DAPI (red)
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transgenes, either with 12 tandem copies of the histone 
gene array or a single array. Our h2b and h3 probe sets 
effectively detected these transgenes (Fig. 1B–C, Addi-
tional file 1: Fig. S1B–C).

To confirm that our RNA FISH probe sets are detect-
ing histone loci, and to confirm that our RNA FISH 
protocol is compatible with IF, we combined our RNA 
FISH assay with antibody detection of the histone-locus 
specific factor Multi sex combs (Mxc) [22, 25]. Mxc also 
localizes to transgenes carrying histone gene arrays on 
polytene chromosomes [17, 18, 22]. We observed that 
Mxc signal colocalizes with h2b and h3 RNA FISH, 
confirming these locations as the endogenous histone 
locus (Fig. 2A, Additional file 1: Fig. S2A) and the trans-
genic loci (Fig.  2B–C, Additional file  1: Fig. S2B–C). 
While developing this protocol, we intentionally con-
ducted IF first because certain RNA FISH regents can 
alter protein epitopes. We included a postfixative step 

in between IF and RNA FISH to preserve the IF signal 
[23], included larger-volume washes, and increased 
the concentration of probe to 3 µL of 25 µM probe per 
100 µL hybridization buffer (see Methods). All of these 
steps contributed to boosting RNA FISH signals when 
combined with IF.

Given that we verified Mxc colocalization with his-
tone genes, we wanted to further test the ability of 
both assays to mark different single-copy genomic loci 
on polytenes. We tested our procedure on mini-white, 
a common transgene marker that we use to mark HA 
transgenes on chromosome 3R, as well as roX2, an 
X-linked long non-coding RNA that is only expressed in 
males. RoX2 participates in Drosophila dosage compen-
sation and coats the male X-chromosome [26, 27]. We 
did not detect a signal for the mini-white gene (Fig. 3A). 
While we clearly detected roX2 on male X-chromo-
somes (Fig. 3B), as previously documented, we saw no 

Fig. 3 RNA FISH on wildtype D. melanogaster polytene chromosomes with a single copy histone array transgene (WT + 1 HA) using probes 
against A mini-white (mw; green), B roX2 (green) in males, and C roX2 (green) in females. Histone2b (h2b) RNA FISH (green) on wildtype polytenes 
(WT; 100 histone arrays) D without RNase treatment and E with RNase treatment. DNA is stained with DAPI (red)
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RNA FISH signals for the roX2 locus in female pol-
ytenes (Fig.  3C). To verify that our RNA FISH probes 
sets were binding to mRNA transcripts and not bind-
ing directly to DNA, we introduced RNase A into the 
procedure. We observed a large reduction in signal 
(Fig. 3D–E), suggesting that our RNA FISH probes are 
binding directly to local mRNA.

Discussion
Our goal in developing a hybrid RNA FISH and IF proto-
col for polytene chromosomes was to create an alternative 
method to visualize protein-DNA localization in Dros-
ophila. Here, we successfully combined RNA FISH and IF 
to visualize Mxc (a protein that only targets histone genes) 
colocalizing with histone gene loci. This proof of prin-
ciple suggests that our hybrid assay could be applied to 
other proteins and genomic loci of interest. Unfortunately, 
we found that mini-white, a common transgene marker 
in Drosophila, was not visible by RNA FISH on polytene 
chromosomes. Considering that the wild-type white gene 
has very low expression levels in salivary glands [28], we 
are not surprised by the absence of mini-white signal. These 
observations suggest that our RNA FISH technique is 
more applicable for visualizing loci of genes that are highly 
expressed in larval salivary glands. Due to the relatively low 
cost of the protocol and reagents in addition to the 3 day 
turnaround time, we believe this hybrid RNA FISH and IF 
procedure is an accessible method for testing protein-DNA 
colocalization, especially for those with limited wet lab 
experience.

Limitations
This protocol is most likely limited to investigating genes 
in Drosophila polytene chromosomes that have high 
expression in Drosophila larval salivary glands. We only 
tested this method in Drosophila melanogaster, yet we 
see no reason why this assay cannot be applied to other 
Drosophila species. Polytene chromosomes represent 
up to 1024 copies of the genome (11); we did not test 
our protocol on diploid cells. However, as others have 
observed that RNA FISH signals often cluster around 
genomic loci, RNA FISH-IF is likely a viable technique 
to simultaneously visualize DNA loci and proteins, even 
in diploid cells. Although RNA FISH may be used for 
quantitative analyses, here we use it solely as a locational 
marker.
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