Bartel DP: MicroRNAs: Genomics, Biogenesis, Mechanism and Fuction. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5.
Article
CAS
PubMed
Google Scholar
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP: MicroRNAs in plants. Genes Dev. 2002, 16: 1616-1626. 10.1101/gad.1004402.
Article
CAS
PubMed Central
PubMed
Google Scholar
Baskerville S, Bartel DP: Microarray profiling of microRNAs reveals frequent coexpression with neighboring microRNAs and host genes. RNA. 2005, 11: 241-247. 10.1261/rna.7240905.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP: Prediction of plant microRNA targets. Cell. 2002, 110: 513-520. 10.1016/S0092-8674(02)00863-2.
Article
CAS
PubMed
Google Scholar
Reinhart B, Slack F, Basson M, Pasquinelli A, Bettinger J, Rougvie A, Horvitz R, Ruvkun G: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000, 403: 901-906. 10.1038/35002607.
Article
CAS
PubMed
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20. 10.1016/j.cell.2004.12.035.
Article
CAS
PubMed
Google Scholar
Ding L, Spencer A, Morita K, Han M: The developmental time regulator AIN-1 interacts with miRISCs and may target the Argonaute protein ALG-1 to cytoplasmic P- bodies in C. elegans . Mol Cell. 2005, 19: 437-447. 10.1016/j.molcel.2005.07.013.
Article
CAS
PubMed
Google Scholar
Brodersen P, Voinnet O: Revisiting the principles of microRNA target recognition and mode of action. Nature Reviews. 2009, 10: 141-148.
Article
CAS
PubMed
Google Scholar
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O: Widespread translational inhibition by plant miRNAs and siRNAs. Science. 2008, 320: 1185-1190. 10.1126/science.1159151.
Article
CAS
PubMed
Google Scholar
Llave C, Xie Z, Kasschau KD, Carrington JC: Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science. 2002, 297: 2053-2056. 10.1126/science.1076311.
Article
CAS
PubMed
Google Scholar
Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D: Control of leaf morphogenesis by microRNAs. Nature. 2003, 425: 257-263. 10.1038/nature01958.
Article
CAS
PubMed
Google Scholar
Jones-Rhoades MW, Bartel DP: Computational identification of plant microRNAs and their targets, including a stress-induced microRNA. Mol Cell. 2004, 14: 787-799. 10.1016/j.molcel.2004.05.027.
Article
CAS
PubMed
Google Scholar
Wang XJ, Reyes JL, Chua NH, Gaasterland T: Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 2004, 5: R65-10.1186/gb-2004-5-9-r65.
Article
PubMed Central
PubMed
Google Scholar
Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA: Expression of Arabidopsis miRNA genes. Plant Physiol. 2005, 138: 2145-2154. 10.1104/pp.105.062943.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ: Elucidation of the small RNA component of the transcriptome. Science. 2005, 309: 1567-1569. 10.1126/science.1114112.
Article
CAS
PubMed
Google Scholar
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP: A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana . Genes Dev. 2006, 20: 3407-3425. 10.1101/gad.1476406.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC: High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes. PLoS ONE. 2007, 2: e219-10.1371/journal.pone.0000219.
Article
PubMed Central
PubMed
Google Scholar
Bonnet E, Wuyts J, Rouze P, Peer Van de Y: Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics. 2004, 20: 2911-2917. 10.1093/bioinformatics/bth374.
Article
CAS
PubMed
Google Scholar
Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O: In vivo investigation of the transcription, processing, endonucleolytic activity, and functionalrelevance of the spatial distribution of a plant microRNA. Genes Dev. 2004, 18: 2237-2242. 10.1101/gad.307804.
Article
CAS
PubMed Central
PubMed
Google Scholar
Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y: Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell. 2006, 18: 1134-1151. 10.1105/tpc.105.040725.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D: Highly specific gene silencing by synthetic microRNAs in Arabidopsis. The Plant Cell. 2006, 18: 1121-1133. 10.1105/tpc.105.039834.
Article
CAS
PubMed Central
PubMed
Google Scholar
Niu QW, Lin S-S, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH: Expression of synthetic microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature. 2006, 24: 1420-1428. 10.1038/nbt1255.
CAS
Google Scholar
Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R: Fast and effective prediction of microRNA/target duplexes. RNA. 2004, 10: 1507-1517. 10.1261/rna.5248604.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pelletier MK, Burbulis IE, Winkel-Shirley B: Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings. Plant Mol. 1999, 40: 45-54. 10.1023/A:1026414301100.
Article
CAS
Google Scholar
Winkel-Shirley B: Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001, 126: 485-493. 10.1104/pp.126.2.485.
Article
CAS
PubMed Central
PubMed
Google Scholar
Koornneef M, Luiten W, de Vlsming P, Schram AW: Mutations affecting the testa color in Arabidopsis . Arabidopsis Inf Serv. 1990, 19: 113-115.
Google Scholar
Alves-Junior L, Niemeier S, Hauenschild A, Rehmsmeier M, Merkle T: Comprehensive prediction of novel microRNA targets in Arabidopsis thaliana. Nucleic Acids Res. 2009, 37: 4010-4021. 10.1093/nar/gkp272.
Article
CAS
PubMed Central
Google Scholar
Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR: Site-directed mutagenesis by overlap extension using polymerase chain reaction. Gene. 1989, 77: 51-59. 10.1016/0378-1119(89)90358-2.
Article
CAS
PubMed
Google Scholar
Mathews DH, Sabina J, Zuker M, Turner DH: Expanded sequence dependence of thermodynsmic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999, 288: 911-940. 10.1006/jmbi.1999.2700.
Article
CAS
PubMed
Google Scholar
Sheahan JJ, Rechnitz GA: Flavonoid-specific staining of Arabidopsis thaliana. Biotechniques. 1992, 13: 880-883.
CAS
PubMed
Google Scholar
Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S: Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 2005, 139: 1840-1852. 10.1104/pp.105.066688.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ossowski S, Schwab R, Weigel D: Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 2008, 53: 674-690. 10.1111/j.1365-313X.2007.03328.x.
Article
CAS
PubMed
Google Scholar
Watson JM, Fusaro AF, Wang M, Waterhouse PM: RNA silencing platforms in plants. FEBS Lett. 2005, 579: 5982-5987. 10.1016/j.febslet.2005.08.014.
Article
CAS
PubMed
Google Scholar
Debeaujon I, Peeters AJ, Leon-Kloosterziel KM, Koornneef M: The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like Protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell. 2001, 13: 853-871. 10.1105/tpc.13.4.853.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D: Specific effects of microRNAs on the plant transcriptome. Dev Cell. 2005, 8: 517-527. 10.1016/j.devcel.2005.01.018.
Article
CAS
PubMed
Google Scholar
Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP: MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. EMBO J. 2004, 23: 3356-3364. 10.1038/sj.emboj.7600340.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y: Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5' terminal nucleotide. Cell. 2008, 133: 116-127. 10.1016/j.cell.2008.02.034.
Article
CAS
PubMed Central
PubMed
Google Scholar
Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS: Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA. 2005, 102: 3691-3696. 10.1073/pnas.0405570102.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000, 7: 203-214. 10.1089/10665270050081478.
Article
CAS
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position specific gap penalties and weight matrix choice. Nucl Acids Res. 1994, 22: 4673-4680. 10.1093/nar/22.22.4673.
Article
CAS
PubMed Central
PubMed
Google Scholar
Haasen D, Köhler C, Neuhaus G, Merkle T: Nuclear export of proteins in plants: AtXPO1 is the export receptor for leucine-rich nuclear export signals in Arabidopsis thaliana. Plant J. 1999, 20: 695-705. 10.1046/j.1365-313X.1999.00644.x.
Article
CAS
PubMed
Google Scholar
Becker D, Kemper E, Schell J, Masterson R: New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol. 1992, 20 (6): 1195-1197. 10.1007/BF00028908.
Article
CAS
PubMed
Google Scholar
Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29: 2002-2007. 10.1093/nar/29.9.e45.
Article
Google Scholar