Heinrichs F: International statistics flowers and plants. AIPH/Union Fleurs. 2008, 16-90.
Google Scholar
Folta KM, Gardiner SE: Genetics and Genomics of Rosaceae. 2009, s.l.: Springer-Verlag, 1
Book
Google Scholar
Spiller M, Berger RG, Debener T: Genetic dissection of scent metabolic profiles in diploid rose populations. Theor Appl Genet. 2010, 120: 1461-1471. 10.1007/s00122-010-1268-y.
Article
PubMed
CAS
Google Scholar
Horst RK, Cloyd RA: Compendium of rose diseases and pests: American Phytopathological Society. [Disease compendium series]. 2007
Google Scholar
Biber A, Kaufmann H, Linde M, Spiller M, Terefe D, Debener T: Molecular markers from a BAC contig spanning the Rdr1 locus: a tool for marker-assisted selection in roses. Theor Appl Genet. 2010, 120: 765-773. 10.1007/s00122-009-1197-9.
Article
PubMed
CAS
Google Scholar
Derveaux S, Vandesompele J, Hellemans J: How to do successful gene expression analysis using real-time PCR. Methods. 2010, 50: 227-230. 10.1016/j.ymeth.2009.11.001.
Article
PubMed
CAS
Google Scholar
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT: The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009, 55: 611-622. 10.1373/clinchem.2008.112797.
Article
PubMed
CAS
Google Scholar
van Vandesompele J, Preter K, Pattyn F, Poppe B, Roy N, Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3: RESEARCH0034-
Article
Google Scholar
Volkov RA, Panchuk II, Schoffl F: Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J Exp Bot. 2003, 54: 2343-2349. 10.1093/jxb/erg244.
Article
PubMed
CAS
Google Scholar
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R: Genome-wide identification and testing of superior reference genes for transcript normalization in arabidopsis. Plant Physiol. 2005, 139: 5-17. 10.1104/pp.105.063743.
Article
PubMed
CAS
PubMed Central
Google Scholar
Die JV, Roman B, Nadal S, Gonzalez-Verdejo CI: Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta. 2010, 232: 145-153. 10.1007/s00425-010-1158-1.
Article
PubMed
CAS
Google Scholar
Kakar K, Wandrey M, Czechowski T, Gaertner T, Scheible W, Stitt M, Torres-Jerez I, Xiao Y, Redman J, Wu H, Cheung F, Town C, Udvardi M: A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods. 2008, 4: 18-10.1186/1746-4811-4-18.
Article
PubMed
PubMed Central
Google Scholar
Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M: Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol. 2009, 10:
Google Scholar
Faccioli P, Ciceri GP, Provero P, Stanca AM, Morcia C, Terzi V: A combined strategy of "in silico" transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies. Plant Mol Biol. 2007, 63: 679-688. 10.1007/s11103-006-9116-9.
Article
PubMed
CAS
Google Scholar
Exposito-Rodriguez M, Borges AA, Borges-Perez A, Perez JA: Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol. 2008, 8:
Google Scholar
Lovdal T, Lillo C: Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem. 2009, 387: 238-242. 10.1016/j.ab.2009.01.024.
Article
PubMed
CAS
Google Scholar
Guénin S, Mauriat M, Pelloux J, van Wuytswinkel O, Bellini C, Gutierrez L: Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot. 2009, 60: 487-493. 10.1093/jxb/ern305.
Article
PubMed
Google Scholar
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestKeeper--excel-based tool using pair-wise correlations. Biotechnol Lett. 2004, 26: 509-515.
Article
PubMed
CAS
Google Scholar
Andersen CL, Jensen JL, Ørntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64: 5245-5250. 10.1158/0008-5472.CAN-04-0496.
Article
PubMed
CAS
Google Scholar
Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A: Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques. 2004, 37: 112-119.
PubMed
CAS
Google Scholar
Nicot N, Hausman J, Hoffmann L, Evers D: Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot. 2005, 56: 2907-2914. 10.1093/jxb/eri285.
Article
PubMed
CAS
Google Scholar
Reid KE, Olsson N, Schlosser J, Peng F, Lund ST: An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 2006, 6:
Google Scholar
Waxman S, Wurmbach E: De-regulation of common housekeeping genes in hepatocellular carcinoma. BMC Genomics. 2007, 8: 243-10.1186/1471-2164-8-243.
Article
PubMed
PubMed Central
Google Scholar
Hruz T, Wyss M, Docquier M, Pfaffl MW, Masanetz S, Borghi L, Verbrugghe P, Kalaydjieva L, Bleuler S, Laule O, Descombes P, Gruissem W, Zimmermann P: RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics. 2011, 12:
Google Scholar
Ahmadi N, Mibus H, Serek M: Isolation of an Ethylene-induced Putative Nucleotide Laccase in Miniature Roses (Rosa hybrida L.). J Plant Growth Reg. 2008, 27: 320-330. 10.1007/s00344-008-9059-2.
Article
CAS
Google Scholar
Remay A, Lalanne D, Thouroude T, Le Couviour F, Hibrand-Saint Oyant L, Foucher F: A survey of flowering genes reveals the role of gibberellins in floral control in rose. Theor Appl Gen. 2009, 119: 767-781. 10.1007/s00122-009-1087-1.
Article
CAS
Google Scholar
Mallona I, Lischewski S, Weiss J, Hause B, Egea-Cortines M: Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biology. 2010, 10:
Google Scholar
Cruz F, Kalaoun S, Nobile P, Colombo C, Almeida J, Barros LMG, Romano E, Grossi-De-Sá MF, Vaslin M, Alves-Ferreira M: Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Mol Breed. 2009, 23: 607-616. 10.1007/s11032-009-9259-x.
Article
CAS
Google Scholar
Pihur V, Datta S, Datta S: RankAggreg, an R package for weighted rank aggregation. BMC Bioinformatics. 2009, 10:
Google Scholar
Rieu I, Powers SJ: Real-Time Quantitative RT-PCR: design, calculations, and statistics. Plant Cell. 2009, 21: 1031-1033. 10.1105/tpc.109.066001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Debener T, Mattiesch L: Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor ApplGenet. 1999, 99: 891-899.
CAS
Google Scholar
Mutui TM, Mibus H, Serek M: Effects of thidiazuron, ethylene, abscisic acid and dark storage on leaf yellowing and rooting of Pelargonium cuttings. J Horticultural Sci Biotechnol. 2005, 80: 543-550.
CAS
Google Scholar
Debener T, Drewes-Alvarez R, Rockstroh K: Identification of five physiological races of blackspot, Diplocarpon rosae, Wolf on roses. Plant Breed. 1998, 117: 267-270. 10.1111/j.1439-0523.1998.tb01937.x.
Article
Google Scholar
FGENESH. [http://linux1.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind]
Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol (Clifton, N.J.). 2000, 132: 365-386.
CAS
Google Scholar
Marshall OJ: PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics. 2004, 20: 2471-2472. 10.1093/bioinformatics/bth254.
Article
PubMed
CAS
Google Scholar
Rutledge RG, Stewart D: A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity absolute quantitative real-time PCR. BMC Biotechnology. 2008, 8:
Google Scholar
R Development Core Team: R: A Language and Environment for Statistical Computing. 2009, Vienna, Austria: R Foundation for Statistical
Google Scholar
Hellemans J, Mortier G, Paepe A, Speleman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8: R19-10.1186/gb-2007-8-2-r19.
Article
PubMed
PubMed Central
Google Scholar