Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C: Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet. 2011, 43: 956-963. 10.1038/ng.911.
Article
PubMed
CAS
Google Scholar
Gan X, Stegle O, Behr J, Steffen JG, Drewe P, Hildebrand KL, Lyngsoe R, Schultheiss SJ, Osborne EJ, Sreedharan VT: Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature. 2011, 477: 419-423. 10.1038/nature10414.
Article
PubMed
CAS
Google Scholar
Schneeberger K, Ossowski S, Ott F, Klein JD, Wang X, Lanz C, Smith LM, Cao J, Fitz J, Warthmann N: Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci U S A. 2011, 108: 10249-10254. 10.1073/pnas.1107739108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Weigel D: Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol. 2012, 158: 2-22. 10.1104/pp.111.189845.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM: A map of local adaptation in Arabidopsis thaliana. Science. 2011, 334: 86-89. 10.1126/science.1209271.
Article
PubMed
CAS
Google Scholar
Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, Bergelson J: Adaptation to climate across the Arabidopsis thaliana genome. Science. 2011, 334: 83-86. 10.1126/science.1209244.
Article
PubMed
CAS
Google Scholar
Lee CR, Mitchell-Olds T: Environmental adaptation contributes to gene polymorphism across the Arabidopsis thaliana genome. Mol Biol Evol. 2012, 10.1093/molbev/mss174.
Google Scholar
Koorneef M, Alonso-Blanco C, Vreugdenhil D: Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol. 2004, 44: 141-172.
Article
Google Scholar
Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M: What has natural variation taught us about plant development, physiology, and adaptation. Plant Cell. 2009, 21: 1877-1896. 10.1105/tpc.109.068114.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koch MA, Haubold B, Mitchell-Olds T: Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol. 2000, 17: 1483-1498. 10.1093/oxfordjournals.molbev.a026248.
Article
PubMed
CAS
Google Scholar
Woodhouse MR, Tang H, Freeling M: Different gene families in Arabidopsis thaliana transposed in different epochs and at different frequencies throughout the rosids. Plant Cell. 2011, 23: 4241-4253. 10.1105/tpc.111.093567.
Article
PubMed
CAS
PubMed Central
Google Scholar
Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC: Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res. 2010, 20: 45-58. 10.1101/gr.093302.109.
Article
PubMed
CAS
PubMed Central
Google Scholar
Borel C, Deutsch S, Letourneau A, Migliavacca E, Montgomery SB, Dimas AS, Vejnar CE, Attar H, Gagnebin M, Gehrig C: Identification of cis- and trans-regulatory variation modulating microRNA expression levels in human fibroblasts. Genome Res. 2011, 21: 68-73. 10.1101/gr.109371.110.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dong D, Yuan Z, Zhang Z: Evidences for increased expression variation of duplicate genes in budding yeast: from cis- to trans-regulation effects. Nucleic Acids Res. 2011, 39: 837-847. 10.1093/nar/gkq874.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sulpice R, Pyl ET, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques MC: Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci USA. 2009, 106: 10348-10353. 10.1073/pnas.0903478106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zeeman SC, Smith SM, Smith AM: The diurnal metabolism of leaf starch. Biochem J. 2007, 401: 13-28. 10.1042/BJ20061393.
Article
PubMed
CAS
Google Scholar
Zeeman SC, Kossmann J, Smith AM: Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol. 2010, 61: 15.1-15.26.
Article
Google Scholar
Ball SG, Morell MK: From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol. 2003, 54: 207-233. 10.1146/annurev.arplant.54.031902.134927.
Article
PubMed
CAS
Google Scholar
Lairson LL, Henrissat B, Davies GJ, Withers SG: Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem. 2008, 77: 521-555. 10.1146/annurev.biochem.76.061005.092322.
Article
PubMed
CAS
Google Scholar
Baldwin PM: Starch granule-associated proteins and polypeptides: a review. Starch-Staerke. 2001, 53: 476-503.
Article
Google Scholar
Keeling PL, Myers AM: Biochemistry and genetics of starch synthesis. Annu Rev Food Sci Technol. 2010, 1: 271-303. 10.1146/annurev.food.102308.124214.
Article
PubMed
CAS
Google Scholar
Deschamps P, Moreau H, Worden AZ, Dauvillée D, Ball SG: Early gene duplication within chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts. Genetics. 2008, 178: 2373-2387. 10.1534/genetics.108.087205.
Article
PubMed
CAS
PubMed Central
Google Scholar
Imparl-Radosevich JM, Keeling PL, Guan HP: Essential arginine residues in maize starch synthase IIa are involved in both ADP-glucose and primer binding. FEBS Lett. 1999, 457: 357-362. 10.1016/S0014-5793(99)01066-2.
Article
PubMed
CAS
Google Scholar
Dian W, Jiang H, Wu P: Evolution and expression analysis of starch synthase III and IV in rice. J Exp Bot. 2005, 56: 623-632. 10.1093/jxb/eri065.
Article
PubMed
CAS
Google Scholar
Campbell JA, Davies GJ, Bulone V, Henrissat B: A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J. 1997, 326: 929-939.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ross J, Li Y, Lim E, Bowles DJ: Higher plant glycosyltransferases. Genome Biol. 2001, 2: REVIEWS3004-
Article
PubMed
CAS
PubMed Central
Google Scholar
Palopoli N, Busi MV, Fornasari MS, Gomez-Casati D, Ugalde R, Parisi G: Starch-synthase III family encodes a tandem of three starch-binding domains. Proteins. 2006, 65: 27-31. 10.1002/prot.21007.
Article
PubMed
CAS
Google Scholar
Wayllace NZ, Valdez HA, Ugalde RA, Busi MV, Gomez-Casati DF: The starch-binding capacity of the noncatalytic SBD2 region and the interaction between the N- and C-terminal domains are involved in the modulation of the activity of starch synthase III from Arabidopsis thaliana. FEBS J. 2009, 277: 428-440.
Article
PubMed
Google Scholar
Cork JM, Purugganan MD: High-diversity genes in the Arabidopsis genome. Genetics. 2005, 170: 1897-1911. 10.1534/genetics.104.036152.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhu L, Zhang Y, Zhang W, Yang S, Chen J-Q, Tian D: Patterns of exon-intron architecture variation of genes in eukaryotic genomes. BMC Genomics. 2009, 10: 47-10.1186/1471-2164-10-47.
Article
PubMed
PubMed Central
Google Scholar
Emanuelsson O, Nielsen H, von Heijne G: ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999, 8: 978-984. 10.1110/ps.8.5.978.
Article
PubMed
CAS
PubMed Central
Google Scholar
Leterrier M, Holappa LD, Broglie KE, Beckles DM: Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biol. 2008, 8: 98-10.1186/1471-2229-8-98.
Article
PubMed
PubMed Central
Google Scholar
Betts MJ, Russell RB: Amino acid properties and consequences of substitutions. Bioinformatics for Geneticists. Edited by: Barnes MR, Gray IC. 2003, Chichester, UK: Wiley, 289-316.
Chapter
Google Scholar
Busi MV, Palopoli N, Valdez HA, Fornasari MS, Wayllace NZ, Gomez-Casati DF, Parisi G, Ugalde RA: Functional and structural characterization of the catalytic domain of the starch synthase III from Arabidopsis thaliana. Proteins. 2008, 70: 31-40.
Article
PubMed
CAS
Google Scholar
Roldán I, Wattebled F, Lucas MM, Delvallé D, Planchot V, Jimenez S, Perez R, Ball S, D’Hulst C, Merida A: The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J. 2007, 49: 492-504. 10.1111/j.1365-313X.2006.02968.x.
Article
PubMed
Google Scholar
Lempe J, Balasubramanian S, Sureshkumar S, Singh A, Schmid M, Weigel D: Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet. 2005, 1: 109-118.
Article
PubMed
CAS
Google Scholar
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ: An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One. 2007, 2: e718-10.1371/journal.pone.0000718.
Article
PubMed
PubMed Central
Google Scholar
Yamamoto YY, Obokata J: PPDB: a plant promoter database. Nucleic Acids Res. 2008, 36: D977-D981.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fernie AR, Schauer N: Metabolomics-assisted breeding: a viable option for crop improvement?. Trends Genet. 2009, 25: 39-48. 10.1016/j.tig.2008.10.010.
Article
PubMed
CAS
Google Scholar
Kliebenstein DJ: A role for gene duplication and natural variation of gene expression in the evolution of metabolism. PLoS One. 2008, 3: e1838-10.1371/journal.pone.0001838.
Article
PubMed
PubMed Central
Google Scholar
Olsen KM, Womack A, Garrett AR, Suddith JI, Purugganan MD: Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway. Genetics. 2002, 160: 1641-1650.
PubMed
CAS
PubMed Central
Google Scholar
Tian D, Araki H, Stahl E, Bergelson J, Kreitman M: Signature of balancing selection in Arabidopsis. Proc Natl Acad Sci U S A. 2002, 99: 11525-11530. 10.1073/pnas.172203599.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lu Y, Rausher MD: Evolutionary rate variation in anthocyanin pathway genes. Mol Evol Biol. 2003, 20: 1844-1853. 10.1093/molbev/msg197.
Article
CAS
Google Scholar
Mauricio R, Stahl EA, Korves T, Tian D, Kreitman M, Bergelson J: Natural selection for polymorphism in the disease resistance gene Rps2 of Arabidopsis thaliana. Genetics. 2003, 163: 735-746.
PubMed
CAS
PubMed Central
Google Scholar
Shepard KA, Purugganan MD: Molecular population genetics of the Arabidopsis CLAVATA2 region: the genomic scale of variation and selection in a selfing species. Genetics. 2003, 163: 1083-1095.
PubMed
CAS
PubMed Central
Google Scholar
Clauss MJ, Mitchell-Olds T: Functional divergence in tandemly duplicated Arabidopsis thaliana trypsin inhibitor genes. Genetics. 2004, 166: 1419-1436. 10.1534/genetics.166.3.1419.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rose LE, Bittner-Eddy PD, Langley CH, Holub EB, Michelmore RW, Beynon JL: The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics. 2004, 166: 1517-1527. 10.1534/genetics.166.3.1517.
Article
PubMed
CAS
PubMed Central
Google Scholar
Moore RC, Grant SR, Purugganan MD: Molecular population genetics of redundant floral-regulatory genes in Arabidopsis thaliana. Mol Biol Evol. 2005, 22: 91-103.
Article
PubMed
CAS
Google Scholar
Ramos-Onsins SE, Puerma E, Balañá-Alcaide D, Salguero D, Aguadé M: Multilocus analysis of variation using a large empirical data set: phenylpropanoid pathway genes in Arabidopsis thaliana. Mol Ecol. 2008, 17: 1211-1223. 10.1111/j.1365-294X.2007.03633.x.
Article
PubMed
CAS
Google Scholar
Weigel D, Mott R: The 1001 genomes project for Arabidopsis thaliana. Genome Biol. 2009, 10: 107-10.1186/gb-2009-10-5-107.
Article
PubMed
PubMed Central
Google Scholar
Schwarte S, Tiedemann R: A gene duplication/loss event in the ribulose-1,5-bisphosphate-carboxylase/oxygenase (Rubisco) small subunit gene family among accessions of Arabidopsis thaliana. Mol Biol Evol. 2011, 28: 1861-1876. 10.1093/molbev/msr008.
Article
PubMed
CAS
Google Scholar
Brust H, Orzechowski S, Fettke J, Steup M: Starch synthesizing reactions and paths: in vitro and in vivo studies. J Appl Glycoscience. 2013, In press
Google Scholar
Zhang X, Myers AM, James MG: Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch synthesis. Plant Physiol. 2005, 138: 663-674. 10.1104/pp.105.060319.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E, Calabrese P, Gladstone J, Goyal R: The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 2005, 3: e196-10.1371/journal.pbio.0030196.
Article
PubMed
PubMed Central
Google Scholar
Schmid KJ, Törjék O, Meyer R, Schmuths H, Hoffmann MH, Altmann T: Evidence for a large-scale population structure of Arabidopsis thaliana from genome-wide single nucleotide polymorphism markers. Theor Appl Genet. 2006, 112: 1104-1114. 10.1007/s00122-006-0212-7.
Article
PubMed
CAS
Google Scholar
Reininga JM, Nielsen D, Purugganan MD: Functional and geographical differentiation of candidate balanced polymorphisms in Arabidopsis thaliana. Mol Ecol. 2009, 18: 2844-2855. 10.1111/j.1365-294X.2009.04206.x.
Article
PubMed
CAS
Google Scholar
Nichols DJ, Keeling PL, Spalding M, Guan HP: Involvement of conserved aspartate and glutamate residues in the catalysis and substrate binding of maize starch synthase. Biochemistry. 2000, 39: 7820-7825. 10.1021/bi000407g.
Article
PubMed
CAS
Google Scholar
Tetlow IJ, Wait R, Lu ZX, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ: Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell. 2004, 16: 694-708. 10.1105/tpc.017400.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu F, Makhmoudova A, Lee EA, Wait R, Emes MJ, Tetlow IJ: The amylose extender mutant of maize conditions novel protein-protein interactions between starch biosynthetic enzymes in amyloplasts. J Exp Bot. 2009, 60: 4423-4440. 10.1093/jxb/erp297.
Article
PubMed
CAS
Google Scholar
Smith AM: Starch in the Arabidopsis plant. Starch-Staerke. 2012, 64: 421-434.
Article
CAS
Google Scholar
Rogers SO, Bendich AJ: Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol. 1985, 5: 69-76. 10.1007/BF00020088.
Article
PubMed
CAS
Google Scholar
Hall TA: BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/ 98/ NT. Nucl Acids Symp Series. 1999, 41: 95-98.
CAS
Google Scholar
Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009, 25: 1451-1452. 10.1093/bioinformatics/btp187.
Article
PubMed
CAS
Google Scholar
Nei M: Molecular Evolutionary Genetics. 1987, New York, NY: Columbia University Press
Google Scholar
DOE Joint Genome Institute (JGI).http://www.jgi.doe.gov/,
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24: 1596-1599. 10.1093/molbev/msm092.
Article
PubMed
CAS
Google Scholar
Nei M, Kumar S: Molecular Evolution and Phylogenetics. 2000, New York: Oxford University Press
Google Scholar
Jukes TH, Cantor CR: Evolution of protein molecules. Mammalian protein metabolism. Edited by: Munro HN. 1969, New York: Academic Press, 21-132.
Chapter
Google Scholar
Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989, 123: 585-595.
PubMed
CAS
PubMed Central
Google Scholar
Watterson WA: On the number of segregating sites in genetic models without recombination. Theor Popul Biol. 1975, 7: 253-276.
Article
Google Scholar
Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997, 13: 555-556.
PubMed
CAS
Google Scholar
Yang Z, Nielsen R, Goldman N, Pedersen AMK: Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics. 2000, 155: 431-449.
PubMed
CAS
PubMed Central
Google Scholar
Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006, 22: 2688-2690. 10.1093/bioinformatics/btl446.
Article
PubMed
CAS
Google Scholar
R Development Core Team: R: A language and environment for statistical computing. 2011, Austria, Vienna: R Foundation for Statistical Computing
Google Scholar