Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T: A uniform system for microRNA annotation. RNA. 2003, 9: 277-279. 10.1261/rna.2183803.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5.
Article
PubMed
CAS
Google Scholar
Huntzinger E, Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011, 12: 99-110. 10.1038/nrg2936.
Article
PubMed
CAS
Google Scholar
Pritchard CC, Cheng HH, Tewari M: MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012, 13: 358-369.
Article
PubMed
CAS
PubMed Central
Google Scholar
De la Chapelle A, Jazdzewski K: MicroRNAs in thyroid cancer. J Clin Endocrinol Metab. 2011, 96: 3326-3336. 10.1210/jc.2011-1004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Eipper-Mains JE, Kiraly DD, Palakodeti D, Mains RE, Eipper BA, Graveley BR: microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs. RNA. 2011, 17: 1529-1543. 10.1261/rna.2775511.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR: MicroRNA expression profiles classify human cancers. Nature. 2005, 435: 834-838. 10.1038/nature03702.
Article
PubMed
CAS
Google Scholar
Zhang W, Dahlberg JE, Tam W: MicroRNAs in tumorigenesis: a primer. Am J Pathol. 2007, 171: 728-738. 10.2353/ajpath.2007.070070.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ravi A, Gurtan AM, Kumar MS, Bhutkar A, Chin C, Lu V, Lees JA, Jacks T, Sharp PA: Proliferation and tumorigenesis of a murine sarcoma cell line in the absence of DICER1. Cancer Cell. 2012, 21: 848-855. 10.1016/j.ccr.2012.04.037.
Article
PubMed
CAS
PubMed Central
Google Scholar
Evan Johnson W, Welker NC, Bass BL: Dynamic linear model for the identification of miRNAs in next-generation sequencing data. Biometrics. 2011, 67: 1206-1214. 10.1111/j.1541-0420.2010.01570.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Farazi TA, Brown M, Morozov P, Ten Hoeve JJ, Ben-Dov IZ, Hovestadt V, Hafner M, Renwick N, Mihailović A, Wessels LFA, Tuschl T: Bioinformatic analysis of barcoded cDNA libraries for small RNA profiling by next-generation sequencing. Methods. 2012, 58: 171-187. 10.1016/j.ymeth.2012.07.020.
Article
PubMed
CAS
PubMed Central
Google Scholar
Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C: Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA. 2010, 16: 991-1006. 10.1261/rna.1947110.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ach RA, Wang H, Curry B: Measuring microRNAs: comparisons of microarray and quantitative PCR measurements, and of different total RNA prep methods. BMC Biotechnol. 2008, 8: 69-10.1186/1472-6750-8-69.
Article
PubMed
PubMed Central
Google Scholar
Chen Y, Gelfond JAL, McManus LM, Shireman PK: Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genomics. 2009, 10: 407-10.1186/1471-2164-10-407.
Article
PubMed
PubMed Central
Google Scholar
Callari M, Dugo M, Musella V, Marchesi E, Chiorino G, Grand MM, Pierotti MA, Daidone MG, Canevari S, De Cecco L: Comparison of microarray platforms for measuring differential microRNA expression in paired normal/cancer colon tissues. PLoS ONE. 2012, 7: e45105-10.1371/journal.pone.0045105.
Article
PubMed
CAS
PubMed Central
Google Scholar
Willenbrock H, Salomon J, Søkilde R, Barken KB, Hansen TN, Nielsen FC, Møller S, Litman T: Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing. RNA. 2009, 15: 2028-2034. 10.1261/rna.1699809.
Article
PubMed
CAS
PubMed Central
Google Scholar
Leshkowitz D, Horn-Saban S, Parmet Y, Feldmesser E: Differences in microRNA detection levels are technology and sequence dependent. RNA. 2013, 19: 527-538. 10.1261/rna.036475.112.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pradervand S, Weber J, Lemoine F, Consales F, Paillusson A, Dupasquier M, Thomas J, Richter H, Kaessmann H, Beaudoing E, Hagenbüchle O, Harshman K: Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques. 2010, 48: 219-222. 10.2144/000113367.
Article
PubMed
CAS
Google Scholar
Kolbert CP, Feddersen RM, Rakhshan F, Grill DE, Simon G, Middha S, Jang JS, Simon V, Schultz DA, Zschunke M, Lingle W, Carr JM, Thompson EA, Oberg AL, Eckloff BW, Wieben ED, Li P, Yang P, Jen J: Multi-platform analysis of microRNA expression measurements in RNA from fresh frozen and FFPE tissues. PLoS ONE. 2013, 8: e52517-10.1371/journal.pone.0052517.
Article
PubMed
CAS
PubMed Central
Google Scholar
Borup R, Rossing M, Henao R, Yamamoto Y, Krogdahl A, Godballe C, Winther O, Kiss K, Christensen L, Høgdall E, Bennedbaek F, Nielsen FC: Molecular signatures of thyroid follicular neoplasia. Endocr Relat Cancer. 2010, 17: 691-708. 10.1677/ERC-09-0288.
Article
PubMed
CAS
Google Scholar
Ferraz C, Eszlinger M, Paschke R: Current state and future perspective of molecular diagnosis of fine-needle aspiration biopsy of thyroid nodules. J Clin Endocrinol Metab. 2011, 96: 2016-2026. 10.1210/jc.2010-2567.
Article
PubMed
CAS
Google Scholar
Creighton CJ, Reid JG, Gunaratne PH: Expression profiling of microRNAs by deep sequencing. Brief Bioinform. 2009, 10: 490-497. 10.1093/bib/bbp019.
Article
PubMed
CAS
PubMed Central
Google Scholar
Motameny S, Wolters S, Nürnberg P, Schumacher B: Next generation sequencing of miRNAs – strategies, resources and methods. Genes. 2010, 1: 70-84. 10.3390/genes1010070.
Article
PubMed
CAS
PubMed Central
Google Scholar
Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012, 9: 357-359. 10.1038/nmeth.1923.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39 (Database issue): D152-D157.
Article
PubMed
CAS
PubMed Central
Google Scholar
Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010, 26: 841-842. 10.1093/bioinformatics/btq033.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE: MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008, 93: 1600-1608. 10.1210/jc.2007-2696.
Article
PubMed
CAS
PubMed Central
Google Scholar
Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C: A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab. 2006, 91: 3584-3591. 10.1210/jc.2006-0693.
Article
PubMed
CAS
Google Scholar
Rossing M, Borup R, Henao R, Winther O, Vikesaa J, Niazi O, Godballe C, Krogdahl A, Glud M, Hjort-Sørensen C, Kiss K, Bennedbæk FN, Nielsen FC: Down-regulation of microRNAs controlling tumourigenic factors in follicular thyroid carcinoma. J Mol Endocrinol. 2012, 48: 11-23. 10.1530/JME-11-0039.
Article
PubMed
CAS
Google Scholar
Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17: 10-12.
Article
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The sequence alignment/Map format and SAMtools. Bioinformatics. 2009, 25: 2078-2079. 10.1093/bioinformatics/btp352.
Article
PubMed
PubMed Central
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004, 5: R80-10.1186/gb-2004-5-10-r80.
Article
PubMed
PubMed Central
Google Scholar
Morgan M, Anders S, Lawrence M, Aboyoun P, Pagès H, Gentleman R: ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics. 2009, 25: 2607-2608. 10.1093/bioinformatics/btp450.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008, 5: 621-628. 10.1038/nmeth.1226.
Article
PubMed
CAS
Google Scholar
Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol. 2010, 11: R106-10.1186/gb-2010-11-10-r106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010, 11: R25-10.1186/gb-2010-11-3-r25.
Article
PubMed
PubMed Central
Google Scholar
Shao C, Wu Q, Qiu J, Jin S, Zhang B, Qian J, Chen M, Meng Y: Identification of novel microRNA-like-coding sites on the long-stem microRNA precursors in Arabidopsis. Gene. 2013, 527: 477-483. 10.1016/j.gene.2013.06.070.
Article
PubMed
CAS
Google Scholar
Chen M, Zhang X, Liu J, Storey KB: High-throughput sequencing reveals differential expression of miRNAs in intestine from sea cucumber during aestivation. PLoS ONE. 2013, 8: e76120-10.1371/journal.pone.0076120.
Article
PubMed
CAS
PubMed Central
Google Scholar
Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012, 40: 37-52. 10.1093/nar/gkr688.
Article
PubMed
PubMed Central
Google Scholar
Brennecke J, Stark A, Russell RB, Cohen SM: Principles of microRNA-target recognition. PLoS Biol. 2005, 3: e85-10.1371/journal.pbio.0030085.
Article
PubMed
PubMed Central
Google Scholar
Jan CH, Friedman RC, Ruby JG, Bartel DP: Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature. 2011, 469: 97-101. 10.1038/nature09616.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ferraz C, Lorenz S, Wojtas B, Bornstein SR, Paschke R, Eszlinger M: Inverse correlation of miRNA and cell cycle-associated genes suggests influence of miRNA on benign thyroid nodule tumorigenesis. J Clin Endocrinol Metab. 2013, 98: E8-E16. 10.1210/jc.2012-2564.
Article
PubMed
CAS
Google Scholar
Marín RM, Voellmy F, von Erlach T, Vaníček J: Analysis of the accessibility of CLIP bound sites reveals that nucleation of the miRNA:mRNA pairing occurs preferentially at the 3′-end of the seed match. RNA. 2012, 18: 1760-1770. 10.1261/rna.033282.112.
Article
PubMed
PubMed Central
Google Scholar
Kitano M, Rahbari R, Patterson EE, Steinberg SM, Prasad NB, Wang Y, Zeiger MA, Kebebew E: Evaluation of candidate diagnostic microRNAs in thyroid fine-needle aspiration biopsy samples. Thyroid. 2012, 22: 285-291. 10.1089/thy.2011.0313.
Article
PubMed
CAS
PubMed Central
Google Scholar