Cone LA, Woodard DR, Schlievert PM, Tomory GS: Clinical and bacteriologic observations of a toxic shock-like syndrome due to Streptococcus pyogenes. N Engl J Med. 1987, 317: 146-149. 10.1056/NEJM198707163170305.
Article
PubMed
CAS
Google Scholar
Hoge CW, Schwartz B, Talkington DF, Breiman RF, MacNeill EM, Englender SJ: The changing epidemiology of invasive group A streptococcal infections and the emergence of streptococcal toxic shock-like syndrome. A retrospective population-based study. JAMA. 1993, 269: 384-389. 10.1001/jama.1993.03500030082037.
Article
PubMed
CAS
Google Scholar
Schwartz B, Facklam RR, Breiman RF: Changing epidemiology of group A streptococcal infection in the USA. Lancet. 1990, 336: 1167-1171. 10.1016/0140-6736(90)92777-F.
Article
PubMed
CAS
Google Scholar
Stevens DL: Invasive group A streptococcal infections: the past, present and future. Pediatr Infect Dis J. 1994, 13: 561-566. 10.1097/00006454-199406000-00033.
Article
PubMed
CAS
Google Scholar
Hasegawa T, Hashikawa SN, Nakamura T, Torii K, Ohta M: Factors determining prognosis in streptococcal toxic shock-like syndrome: results of a nationwide investigation in Japan. Microbes Infect. 2004, 6: 1073-1077. 10.1016/j.micinf.2004.06.001.
Article
PubMed
Google Scholar
Agarwal S, Agarwal S, Pancholi P, Pancholi V: Role of serine/threonine phosphatase (SP-STP) in Streptococcus pyogenes physiology and virulence. J Biol Chem. 2011, 286: 41368-41380. 10.1074/jbc.M111.286690.
Article
PubMed
CAS
PubMed Central
Google Scholar
Musser JM, Shelburne SA: A decade of molecular pathogenomic analysis of group A Streptococcus. J Clin Invest. 2009, 119: 2455-2463. 10.1172/JCI38095.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kreikemeyer B, McIver KS, Podbielski A: Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microbiol. 2003, 11: 224-232. 10.1016/S0966-842X(03)00098-2.
Article
PubMed
CAS
Google Scholar
Stock AM, Robinson VL, Goudreau PN: Two-component signal transduction. Annu Rev Biochem. 2000, 69: 183-215. 10.1146/annurev.biochem.69.1.183.
Article
PubMed
CAS
Google Scholar
Sumby P, Whitney AR, Graviss EA, DeLeo FR, Musser JM: Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog. 2006, 2: e5-10.1371/journal.ppat.0020005.
Article
PubMed
PubMed Central
Google Scholar
Levin JC, Wessels MR: Identification of csrR/csrS, a genetic locus that regulates hyaluronic acid capsule synthesis in group A Streptococcus. Mol Microbiol. 1998, 30: 209-219. 10.1046/j.1365-2958.1998.01057.x.
Article
PubMed
CAS
Google Scholar
Bernish B, van de Rijn I: Characterization of a two-component system in Streptococcus pyogenes which is involved in regulation of hyaluronic acid production. J Biol Chem. 1999, 274: 4786-4793. 10.1074/jbc.274.8.4786.
Article
PubMed
CAS
Google Scholar
Federle MJ, McIver KS, Scott JR: A response regulator that represses transcription of several virulence operons in the group A streptococcus. J Bacteriol. 1999, 181: 3649-3657.
PubMed
CAS
PubMed Central
Google Scholar
Heath A, DiRita VJ, Barg NL, Engleberg NC: A two-component regulatory system, CsrR-CsrS, represses expression of three Streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect Immun. 1999, 67: 5298-5305.
PubMed
CAS
PubMed Central
Google Scholar
Engleberg NC, Heath A, Miller A, Rivera C, DiRita VJ: Spontaneous mutations in the CsrRS two-component regulatory system of Streptococcus pyogenes result in enhanced virulence in a murine model of skin and soft tissue infection. J Infect Dis. 2001, 183: 1043-1054. 10.1086/319291.
Article
PubMed
CAS
Google Scholar
Ichikawa M, Minami M, Isaka M, Tatsuno I, Hasegawa T: Analysis of two-component sensor proteins involved in the response to acid stimuli in Streptococcus pyogenes. Microbiology. 2011, 157: 3187-3194. 10.1099/mic.0.050534-0.
Article
PubMed
CAS
Google Scholar
Tatsuno I, Okada R, Zhang Y, Isaka M, Hasegawa T: Partial loss of CovS function in Streptococcus pyogenes causes severe invasive disease. BMC Res Notes. 2013, 6: 126-10.1186/1756-0500-6-126.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koller T, Manetti AG, Kreikemeyer B, Lembke C, Margarit I, Grandi G, Podbielski A: Typing of the pilus-protein-encoding FCT region and biofilm formation as novel parameters in epidemiological investigations of Streptococcus pyogenes isolates from various infection sites. J Med Microbiol. 2010, 59: 442-452. 10.1099/jmm.0.013581-0.
Article
PubMed
Google Scholar
DiRita VJ, Mekalanos JJ: Genetic regulation of bacterial virulence. Annu Rev Genet. 1989, 23: 455-482. 10.1146/annurev.ge.23.120189.002323.
Article
PubMed
CAS
Google Scholar
Caparon MG, Geist RT, Perez-Casal J, Scott JR: Environmental regulation of virulence in group A streptococci: transcription of the gene encoding M protein is stimulated by carbon dioxide. J Bacteriol. 1992, 174: 5693-5701.
PubMed
CAS
PubMed Central
Google Scholar
Hasegawa T, Okamoto A, Kamimura T, Tatsuno I, Hashikawa SN, Yabutani M, Matsumoto M, Yamada K, Isaka M, Minami M, Ohta M: Detection of invasive protein profile of Streptococcus pyogenes M1 isolates from pharyngitis patients. APMIS. 2010, 118: 167-178. 10.1111/j.1600-0463.2009.02574.x.
Article
PubMed
CAS
Google Scholar
Tatsuno I, Isaka M, Minami M, Hasegawa T: NADase as a target molecule of in vivo suppression of the toxicity in the invasive M-1 group A Streptococcal isolates. BMC Microbiol. 2010, 10: 144-10.1186/1471-2180-10-144.
Article
PubMed
PubMed Central
Google Scholar
Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux C, Sezate S, Suvorov AN, Kenton S, Lai HS, Lin SP, Qian Y, Jia HG, Najar FZ, Ren Q, Zhu H, Song L, White J, Yuan X, Clifton SW, Roe BA, McLaughlin R: Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci USA. 2001, 98: 4658-4663. 10.1073/pnas.071559398.
Article
PubMed
CAS
PubMed Central
Google Scholar
Suvorov AN, Ferretti JJ: Physical and genetic chromosomal map of an M type 1 strain of Streptococcus pyogenes. J Bacteriol. 1996, 178: 5546-5549.
PubMed
CAS
PubMed Central
Google Scholar
Okada N, Tatsuno I, Hanski E, Caparon M, Sasakawa C: Streptococcus pyogenes protein F promotes invasion of HeLa cells. Microbiology. 1998, 144: 3079-3086. 10.1099/00221287-144-11-3079.
Article
PubMed
CAS
Google Scholar
Ibrahim YM, Kerr AR, McCluskey J, Mitchell TJ: Control of virulence by the two-component system CiaR/H is mediated via HtrA, a major virulence factor of Streptococcus pneumoniae. J Bacteriol. 2004, 186: 5258-5266. 10.1128/JB.186.16.5258-5266.2004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Eguchi Y, Kubo N, Matsunaga H, Igarashi M, Utsumi R: Development of an antivirulence drug against Streptococcus mutans: repression of biofilm formation, acid tolerance, and competence by a histidine kinase inhibitor, walkmycin C. Antimicrob Agents Chemother. 2011, 55: 1475-1484. 10.1128/AAC.01646-10.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lemme A, Sztajer H, Wagner-Dobler I: Characterization of mleR, a positive regulator of malolactic fermentation and part of the acid tolerance response in Streptococcus mutans. BMC Microbiol. 2010, 10: 58-10.1186/1471-2180-10-58.
Article
PubMed
PubMed Central
Google Scholar
Miyoshi-Akiyama T, Ikebe T, Watanabe H, Uchiyama T, Kirikae T, Kawamura Y: Use of DNA arrays to identify a mutation in the negative regulator, csrR, responsible for the high virulence of a naturally occurring type M3 group A streptococcus clinical isolate. J Infect Dis. 2006, 193: 1677-1684. 10.1086/504263.
Article
PubMed
CAS
Google Scholar
Biswas I, Drake L, Erkina D, Biswas S: Involvement of sensor kinases in the stress tolerance response of Streptococcus mutans. J Bacteriol. 2008, 190: 68-77. 10.1128/JB.00990-07.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gong Y, Tian XL, Sutherland T, Sisson G, Mai J, Ling J, Li YH: Global transcriptional analysis of acid-inducible genes in Streptococcus mutans: multiple two-component systems involved in acid adaptation. Microbiology. 2009, 155: 3322-3332. 10.1099/mic.0.031591-0.
Article
PubMed
CAS
Google Scholar
Seol JH, Woo SK, Jung EM, Yoo SJ, Lee CS, Kim KJ, Tanaka K, Ichihara A, Ha DB, Chung CH: Protease Do is essential for survival of Escherichia coli at high temperatures: its identity with the htrA gene product. Biochem Biophys Res Commun. 1991, 176: 730-736. 10.1016/S0006-291X(05)80245-1.
Article
PubMed
CAS
Google Scholar
Spiess C, Beil A, Ehrmann M: A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell. 1999, 97: 339-347. 10.1016/S0092-8674(00)80743-6.
Article
PubMed
CAS
Google Scholar
Jones CH, Bolken TC, Jones KF, Zeller GO, Hruby DE: Conserved DegP protease in gram-positive bacteria is essential for thermal and oxidative tolerance and full virulence in Streptococcus pyogenes. Infect Immun. 2001, 69: 5538-5545. 10.1128/IAI.69.9.5538-5545.2001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Borovok I, Gorovitz B, Yanku M, Schreiber R, Gust B, Chater K, Aharonowitz Y, Cohen G: Alternative oxygen-dependent and oxygen-independent ribonucleotide reductases in Streptomyces: cross-regulation and physiological role in response to oxygen limitation. Mol Microbiol. 2004, 54: 1022-1035. 10.1111/j.1365-2958.2004.04325.x.
Article
PubMed
CAS
Google Scholar
Case ED, Akers JC, Tan M: CT406 encodes a chlamydial ortholog of NrdR, a repressor of ribonucleotide reductase. J Bacteriol. 2011, 193: 4396-4404. 10.1128/JB.00294-11.
Article
PubMed
PubMed Central
Google Scholar
Panosa A, Roca I, Gibert I: Ribonucleotide reductases of Salmonella typhimurium: transcriptional regulation and differential role in pathogenesis. PLoS One. 2010, 5: e11328-10.1371/journal.pone.0011328.
Article
PubMed
PubMed Central
Google Scholar
Toukoki C, Gryllos I: PolA1, a putative DNA polymerase I, is coexpressed with PerR and contributes to peroxide stress defenses of group A Streptococcus. J Bacteriol. 2013, 195: 717-725. 10.1128/JB.01847-12.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang B, Li S, Dedhar S, Cleary PP: Paxillin phosphorylation: bifurcation point downstream of integrin-linked kinase (ILK) in streptococcal invasion. Cell Microbiol. 2007, 9: 1519-1528. 10.1111/j.1462-5822.2007.00889.x.
Article
PubMed
CAS
Google Scholar
Hyland KA, Wang B, Cleary PP: Protein F1 and Streptococcus pyogenes resistance to phagocytosis. Infect Immun. 2007, 75: 3188-3191. 10.1128/IAI.01745-06.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gibson C, Fogg G, Okada N, Geist RT, Hanski E, Caparon M: Regulation of host cell recognition in Streptococcus pyogenes. Dev Biol Stand. 1995, 85: 137-144.
PubMed
CAS
Google Scholar
Graham MR, Smoot LM, Migliaccio CA, Virtaneva K, Sturdevant DE, Porcella SF, Federle MJ, Adams GJ, Scott JR, Musser JM: Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci USA. 2002, 99: 13855-13860. 10.1073/pnas.202353699.
Article
PubMed
CAS
PubMed Central
Google Scholar