Agrawal Y, Carey JP, Della Santina CC, Schubert MC, Minor LB. Disorders of balance and vestibular function in US adults. Arch Intern Med. 2009;169:938–44.
Article
PubMed
Google Scholar
Smith RJH, Shearer AE, Hildebrand MS, Van Camp G. Deafness and hereditary hearing loss overview. 2014. http://www.ncbi.nlm.nih.gov/books/NBK1434/. Accessed 18 Dec 2014.
Ciuman RR. Inner ear symptoms and disease: pathophysiological understanding and therapeutic options. Med Sci Monit. 2013;19:1195–210.
Article
PubMed Central
CAS
PubMed
Google Scholar
McDermott BM Jr, Baucom JM, Hudspeth AJ. Analysis and functional evaluation of the hair-cell transcriptome. Proc Natl Acad Sci USA. 2007;104:11820–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Walshe P, Walsh M. McConn Walsh R. Hair cell regeneration in the inner ear: a review. Clin Otolaryngol. 2003;28:5–13.
Article
CAS
PubMed
Google Scholar
Collado MS, Burns JC, Hu Z, Corwin JT. Recent advances in hair cell regeneration research. Curr Opin Otolaryngol Head Neck Surg. 2008;16:465–71.
Article
PubMed Central
PubMed
Google Scholar
Quick QA, Serrano EE. Inner ear formation during the early larval development of Xenopus laevis. Dev Dyn. 2005;234:791–801.
Article
PubMed Central
CAS
PubMed
Google Scholar
Van Dijk P, Mason MJ, Schoffelen RL, Narins PM, Meenderink SW. Mechanics of the frog ear. Hear Res. 2011;273:46–58.
Article
PubMed Central
PubMed
Google Scholar
Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T. Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective. Evol Dev. 2013;15:63–79.
Article
PubMed Central
PubMed
Google Scholar
Bever MM, Jean YY, Fekete DM. Three-dimensional morphology of inner ear development in Xenopus laevis. Dev Dyn. 2003;227:422–30.
Article
PubMed
Google Scholar
Chung HA, Medina-Ruiz S, Harland RM. Sp8 regulates inner ear development. Proc Natl Acad Sci USA. 2014;111:6329–34.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harland RM, Grainger RM. Xenopus research: metamorphosed by genetics and genomics. Trends Genet. 2011;27:507–15.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gurdon JB, Hopwood N. The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. Int J Dev Biol. 2000;44:43–50.
CAS
PubMed
Google Scholar
Slack JM, Beck CW, Gargioli C, Christen B. Cellular and Molecular mechanism of regeneration in Xenopus. Phil Trans R Soc Lond B. 2004;359:745–51.
Article
CAS
Google Scholar
Chen Y, Love NR. Amaya E1. Tadpole tail regeneration in Xenopus. Biochem Soc Trans. 2014;42:617–23.
Article
CAS
PubMed
Google Scholar
Corey DP. Cell biology of mechanotransduction in inner-ear hair cells. F1000 Biol Rep. 2009;1:58.
Article
PubMed Central
PubMed
Google Scholar
Powers TR, Virk SM, Trujillo-Provencio C, Serrano EE. Probing the Xenopus laevis inner ear transcriptome for biological function. BMC Genom. 2011;13:225.
Article
Google Scholar
Nieuwkoop PD, Faber J. Normal table of Xenopus Laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis, 2nd edn. Amsterdam: North-Holland; 1967.
Trujillo-Provencio C, Powers TR, Sultemeier DR, Serrano EE. RNA isolation from Xenopus inner ear sensory endorgans for transcriptional profiling and molecular cloning. Methods Mol Biol. 2009;493:3–20.
Article
CAS
PubMed
Google Scholar
Miller NA, Kingsmore SF, Farmer A, Langley RJ, Mudge J, Crow JA, et al. Management of high-throughput DNA sequencing projects: Alpheus. J Comput Sci Syst Biol. 2008;1:132–48.
PubMed Central
CAS
PubMed
Google Scholar
Online Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD). World Wide Web. http://omim.org/. Accessed 30 Jan 2015.
Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, et al. The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res. 2011;40:D26–32.
Article
PubMed Central
PubMed
Google Scholar
Illumina, white paper: sequencing, RNA-Seq data comparison with gene expression microarrays. 2011;1–8. http://www.europeanpharmaceuticalreview.com/wp-content/uploads/Illumina_whitepaper.pdf
Heasman J. Patterning the early Xenopus embryo. Development. 2006;133:1205–17.
Article
CAS
PubMed
Google Scholar
Segerdell E, Ponferrada VG, James-Zorn C, Burns KA, Fortriede JD, Dahdul WM, Vize PD, Zorn AM. Enhanced XAO: the ontology of Xenopus anatomy and development underpins more accurate annotation of gene expression and queries on Xenbase. J Biomed Semantics. 2013;14:31.
Article
Google Scholar
Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, et al. The genome of the Western clawed frog Xenopus tropicalis. Science. 2010;328:633–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Khokha MK. Xenopus white papers and resources: folding functional genomics and genetics into the frog. Genesis. 2012;50:133–42.
Article
CAS
PubMed
Google Scholar
James-Zorn C, Ponferrada VG, Jarabek CJ, Burns KA, Segerdell EJ, Lee J, Snyder K, et al. Xenbase: expansion and updates of the Xenopus model organism database. Nucleic Acids Res. 2013;41:D865–70.
Article
PubMed Central
CAS
PubMed
Google Scholar
Karpinka JB, Fortriede JD, Burns KA, James-Zorn C, Ponferrada VG, Lee J, et al. Xenbase, the Xenopus model organism database; new virtualized system, data types and genomes. Nucleic Acids Res. 2015;43:D756–63.
Article
PubMed Central
PubMed
Google Scholar
Lee YS, Krishnan A, Zhu Q, Troyanskaya OG. Ontology-aware classification of tissue and cell-type signals in gene expression profiles across platforms and technologies. Bioinformatics. 2013;29:3036–44.
Article
PubMed Central
CAS
PubMed
Google Scholar
Speiser DI, Pankey M, Zaharoff AK, Battelle BA, Bracken-Grissom HD, Breinholt JW, et al. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms. BMC Bioinform. 2014;15:350.
Article
Google Scholar
Cheng AG, Cunningham LL, Rubel EW. Mechanisms of hair cell death and protection. Curr Opin Otolaryngol Head Neck Surg. 2005;13:343–8.
Article
PubMed
Google Scholar
Darville LN, Sokolowski BH. Bottom-up and shotgun proteomics to identify a comprehensive cochlear proteome. J Vis Exp. 2014;(85). doi:10.3791/51186.
Hurd PJ, Nelson CJ. Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct Genomic Proteomic. 2009;8:174–83.
Article
CAS
PubMed
Google Scholar
Su Z, Li Z, Chen T, Li QZ, Fang H, Ding D, et al. Comparing next-generation sequencing and microarray technologies in a toxicological study of the effects of aristolochic acid on rat kidneys. Chem Res Toxicol. 2011;24:1486–93.
Article
CAS
PubMed
Google Scholar
Wang C, Gong B, Bushel PR, Thierry-Mieg J, Thierry-Mieg D, Xu J, et al. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat Biotechnol. 2014;32:926–32.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chavan SS, Bauer MA, Peterson EA, Heuck CJ, Johann DJ Jr. Towards the integration, annotation and association of historical microarray experiments with RNA-seq. BMC Bioinform. 2013;Suppl 14:S4.
Hughes S, Capper R, Sandra L, Sparkes N. Sequencing and microarrays for genome analysis: complementary rather than competing? Oxford Gene Technology. 2011. http://epigenome.usc.edu/docs/resources/articles/WP_SeqAndArray_070611.pdf. Accessed 28 Jan 2015.
Kogenaru S, Qing Y, Guo Y, Wang N. RNA-Seq and microarray complement each other in transcriptome profiling. BMC Genom. 2012;13:629.
Article
CAS
Google Scholar
Harbig J, Sprinkle R, Enkemann SA. A sequence-based identification of the genes detected by probesets on the Affymetrix U133 plus 2.0 array. Nucleic Acids Res. 2005;33:e31.
Article
PubMed Central
PubMed
Google Scholar