Dixon R, Harrison M, Lamb C: Early events in the activation of plant defense responses. Annu Rev Phytopathol. 1994, 32: 479-501. 10.1146/annurev.py.32.090194.002403.
Article
CAS
Google Scholar
Kuc J: Compounds from plants that regulate or participate in disease resistance. Boioactive compounds from plants Wiley, Chichester (Ciba Found Symp 154). 1990, 213-228.
Google Scholar
Kuc J: Antifungal compounds in plants. Edited by: HN Nigg and D siegler. 1992, Phytochemical resources for medicine and agriculture Plenum Press, New york, NY, 159-184.
Google Scholar
Kuc J: Phytoalexins, stress metabolism and disease resistance in plants. Annu Rev Phytopathol. 1995, 33: 275-297. 10.1146/annurev.py.33.090195.001423.
Article
PubMed
CAS
Google Scholar
Osbourn A: Saponins and plant defence - a soap story. TRENDS Plant Sci. 1996, 1: 4-9. 10.1016/S1360-1385(96)80016-1.
Article
Google Scholar
Osbourn AE: Preformed Antimicrobial Compounds and Plant Defense against Fungal Attack. Plant Cell. 1996, 8 (10): 1821-1831.
Article
PubMed
CAS
PubMed Central
Google Scholar
Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerre-Tugaye MT, Rosahl S, et al.: Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 2005, 139 (4): 1902-1913. 10.1104/pp.105.066274.
Article
PubMed
CAS
PubMed Central
Google Scholar
van Loon LC, Rep M, Pieterse CM: Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 2006, 44: 135-162. 10.1146/annurev.phyto.44.070505.143425.
Article
PubMed
CAS
Google Scholar
da Cunha L, McFall AJ, Mackey D: Innate immunity in plants: a continuum of layered defenses. Microbes and Infection. 2006, 8 (5): 1372-1381. 10.1016/j.micinf.2005.12.018.
Article
PubMed
CAS
Google Scholar
Lay FT, Anderson MA: Defensins--components of the innate immune system in plants. Curr Protein Pept Sci. 2005, 6 (1): 85-101. 10.2174/1389203053027575.
Article
PubMed
CAS
Google Scholar
Jones DA, Takemoto D: Plant innate immunity - direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol. 2004, 16 (1): 48-62. 10.1016/j.coi.2003.11.016.
Article
PubMed
CAS
Google Scholar
Flors C, Nonell S: Light and singlet oxygen in plant defense against pathogens: phototoxic phenalenone phytoalexins. Acc Chem Res. 2006, 39 (5): 293-300. 10.1021/ar0402863.
Article
PubMed
CAS
Google Scholar
Yamaguchi T, Minami E, Ueki J, Shibuya N: Elicitor-induced activation of phospholipases plays an important role for the induction of defense responses in suspension-cultured rice cells. Plant Cell Physiol. 2005, 46 (4): 579-587. 10.1093/pcp/pci065.
Article
PubMed
CAS
Google Scholar
Broekaert WF, Terras FR, Cammue BP, Osborn RW: Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 1995, 108 (4): 1353-1358. 10.1104/pp.108.4.1353.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cammue BP, De Bolle MF, Schoofs HM, Terras FR, Thevissen K, Osborn RW, Rees SB, Broekaert WF: Gene-encoded antimicrobial peptides from plants. 1994, 186: 91-106.
Google Scholar
De Samblanx GW, Goderis IJ, Thevissen K, Raemaekers R, Fant F, Borremans F, Acland DP, Osborn RW, Patel S, Broekaert WF: Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity. J Biol Chem. 1997, 272 (2): 1171-1179. 10.1074/jbc.272.2.1171.
Article
PubMed
CAS
Google Scholar
Fant F, Vranken W, Broekaert W, Borremans F: Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR. J Mol Biol. 1998, 279 (1): 257-270. 10.1006/jmbi.1998.1767.
Article
PubMed
CAS
Google Scholar
Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez Palenzuela P: Plant defense peptides. Biopolymers-. 1998, 47 (6): 479-491. 10.1002/(SICI)1097-0282(1998)47:6<479::AID-BIP6>3.0.CO;2-K.
Article
PubMed
CAS
Google Scholar
Padovan L, Segat L, Tossi A, Antcheva N, Benko-Iseppon AM, Ederson AK, Brandao L, Calsa T, Crovella S: A plant-defensin from sugarcane (Saccharum spp.). Protein Pept Lett. 2009, 16 (4): 430-436. 10.2174/092986609787848027.
Article
PubMed
CAS
Google Scholar
Padovan L, Segat L, Tossi A, Calsa T, Ederson AK, Brandao L, Guimaraes RL, Pandolfi V, Pestana-Calsa MC, Belarmino LC, et al.: Characterization of a new defensin from cowpea (Vigna unguiculata (L.) Walp.). Protein Pept Lett. 2010, 17 (3): 297-304. 10.2174/092986610790780350.
Article
PubMed
CAS
Google Scholar
Thomma BP, Cammue BP, Thevissen K: Plant defensins. Planta. 2002, 216 (2): 193-202. 10.1007/s00425-002-0902-6.
Article
PubMed
CAS
Google Scholar
Castro MS, Fontes W: Plant defense and antimicrobial peptides. Protein Pept Lett. 2005, 12 (1): 13-18.
PubMed
CAS
Google Scholar
Melo FR, Rigden DJ, Franco OL, Mello LV, Ary MB, Grossi de Sa MF, Bloch C: Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking. Proteins. 2002, 48 (2): 311-319. 10.1002/prot.10142.
Article
PubMed
CAS
Google Scholar
Thevissen K, Ghazi A, De Samblanx GW, Brownlee C, Osborn RW, Broekaert WF: Fungal membrane responses induced by plant defensins and thionins. J Biol Chem. 1996, 271 (25): 15018-15025. 10.1074/jbc.271.25.15018.
Article
PubMed
CAS
Google Scholar
Florack DEA, Stiekema WJ: Thionins: properties, possible biological roles and mechanisms of action. Plant Mol Biol. 1994, 26 (1): 25-37. 10.1007/BF00039517.
Article
PubMed
CAS
Google Scholar
Bohlmann H, Apel K: Thionins. Annu Rev Plant Physiol Plant Mol Biol. 1991, 42: 227-240. 10.1146/annurev.pp.42.060191.001303.
Article
CAS
Google Scholar
Reimann-Philipp U, Schrader G, Martinoia E, Barkholt V, Apel K: Intracellular thionins of barley. A second group of leaf thionins closely related to but distinct from cell wall-bound thionins. J Biol Chem. 1989, 264 (15): 8978-8984.
PubMed
CAS
Google Scholar
Yokoyama S, Kato K, Koba A, Minami Y, Watanabe K, Yagi F: Purification, characterization, and sequencing of antimicrobial peptides, Cy-AMP1, Cy-AMP2, and Cy-AMP3, from the Cycad (Cycas revoluta) seeds. Peptides. 2008, 29 (12): 2110-2117. 10.1016/j.peptides.2008.08.007.
Article
PubMed
CAS
Google Scholar
Chou M-X, Wei X-Y, Chen D-S, Zhou J-C: Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization. J Exp Bot. 2006, 57 (11): 2673-2685. 10.1093/jxb/erl030.
Article
PubMed
CAS
Google Scholar
Wijaya R, Neumann GM, Condron R, Hughes AB, Polya GM: Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci. 2000, 159 (2): 243-255. 10.1016/S0168-9452(00)00348-4.
Article
PubMed
CAS
Google Scholar
Charvolin D, Douliez J, Marion D, Cohen-Addad C, Pebay-Peyroula E: The crystal structure of a wheat nonspecific lipid transfer protein (ns-LTP1) complexed with two molecules of phospholipid at 2.1 A resolution. Eur J Biochem. 1999, 264: 562-568. 10.1046/j.1432-1327.1999.00667.x.
Article
PubMed
CAS
Google Scholar
Kader J-C: Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol. 1996, 47: 627-654. 10.1146/annurev.arplant.47.1.627.
Article
PubMed
CAS
Google Scholar
Molina A, Segura A, Garcia-Olmedo F: Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett. 1993, 316 (2): 119-122. 10.1016/0014-5793(93)81198-9.
Article
PubMed
CAS
Google Scholar
Wirtz K, Gadella T: Properties and modes of action of specific and non-specific phospholipid transfer proteins. Experentia. 1990, 46: 592-599. 10.1007/BF01939698.
Article
CAS
Google Scholar
Shiau YS, Horng SB, Chen CS, Huang PT, Lin C, Hsueh YC, Lou KL: Structural analysis of the unique insecticidal activity of novel mungbean defensin VrD1 reveals possibility of homoplasy evolution between plant defensins and scorpion neurotoxins. J Mol Recognit. 2006, 19: 441-450. 10.1002/jmr.779.
Article
PubMed
CAS
Google Scholar
Liu YJ, Cheng CS, Lai SM, Hsu MP, Chen CS, Lyu PC: Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins. 2006, 63 (4): 777-786. 10.1002/prot.20962.
Article
PubMed
CAS
Google Scholar
Lay FT, Schirra HJ, Scanlon MJ, Anderson MA, Craik DJ: The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP. J Mol Biol. 2003, 325 (1): 175-188. 10.1016/S0022-2836(02)01103-8.
Article
PubMed
CAS
Google Scholar
Yang YF, Cheng KC, Tsai PH, Liu CC, Lee TR, Lyu PC: Alanine substitutions of noncysteine residues in the cysteine-stabilized alphabeta motif. Protein Sci. 2009, 18 (7): 1498-1506. 10.1002/pro.164.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhu S, Gao B, Tytgat J: Phylogenetic distribution, functional epitopes and evolution of the CSab superfamily. Cell Mol Life Sci. 2005, 62: 2257-2269. 10.1007/s00018-005-5200-6.
Article
PubMed
CAS
Google Scholar
Tamaoki H, Miura R, Kusunoki M, Kyogoku Y, Kobayashi Y, Moroder L: Folding motifs induced and stabilized by distinct cystine frameworks. Prot Eng. 1998, 11: 649-659. 10.1093/protein/11.8.649.
Article
CAS
Google Scholar
Kobayashi Y, Sato A, Takashima H, Tamaoki H, Nishimura S, Kyogoku Y, Ikenaka K, Kondo I, Mikoshiba K, Hojo H, et al.: A new alpha -helical motif in membrane active peptides. Neurochem Internat. 1991, 18: 523-534.
Article
Google Scholar
Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Leuven Fv, Vanderleyden J, et al.: Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell. 1995, 7 (5): 573-588.
Article
PubMed
CAS
PubMed Central
Google Scholar
Terras FR, Torrekens S, Van Leuven F, Osborn RW, Vanderleyden J, Cammue BP, Broekaert WF: A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett. 1993, 316 (3): 233-240. 10.1016/0014-5793(93)81299-F.
Article
PubMed
CAS
Google Scholar
Kovalchuk N, Li M, Wittek F, Reid N, Singh R, Shirley N, Ismagul A, Eliby S, Johnson A, Milligan AS, et al.: Defensin promoters as potential tools for engineering disease resistance in cereal grains. Plant Biotechnol J. 2010, 8 (1): 47-64. 10.1111/j.1467-7652.2009.00465.x.
Article
PubMed
CAS
Google Scholar
Bahramnejad B, Erickson LR, Atnaseo C, Goodwin PH: Differential expression of eight defensin genes of N. benthamiana following biotic stress, wounding, ethylene, and benzothiadiazole treatments. Plant Cell Rep. 2009, 28 (4): 703-717. 10.1007/s00299-009-0672-8.
Article
PubMed
CAS
Google Scholar
Hanks JN, Snyder AK, Graham MA, Shah RK, Blaylock LA, Harrison MJ, Shah DM: Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules. Plant Mol Biol. 2005, 58 (3): 385-399. 10.1007/s11103-005-5567-7.
Article
PubMed
CAS
Google Scholar
de Beer A, Vivier MA: Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity. BMC Plant Biol. 2008, 8: 75-10.1186/1471-2229-8-75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meyer B, Houlne G, Pozueta-Romero J, Schantz ML, Schantz R: Fruit-specific expression of a defensin-type gene family in bell pepper. Upregulation during ripening and upon wounding. Plant Physiol. 1996, 112 (2): 615-622. 10.1104/pp.112.2.615.
Article
PubMed
CAS
PubMed Central
Google Scholar
Oh BJ, Ko MK, Kostenyuk I, Shin B, Kim KS: Coexpression of a defensin gene and a thionin-like via different signal transduction pathways in pepper and Colletotrichum gloeosporioides interactions. Plant Mol Biol. 1999, 41 (3): 313-319. 10.1023/A:1006336203621.
Article
PubMed
CAS
Google Scholar
Stotz HU, Spence B, Wang Y: A defensin from tomato with dual function in defense and development. Plant Mol Biol. 2009, 71: (1-2):131-143. 10.1007/s11103-009-9504-z.
Article
CAS
Google Scholar
Lay FT, Brugliera F, Anderson MA: Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol. 2003, 131 (3): 1283-1293. 10.1104/pp.102.016626.
Article
PubMed
CAS
PubMed Central
Google Scholar
Janssen BJ, Schirra HJ, Lay FT, Anderson MA, Craik DJ: Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds. Biochemistry. 2003, 42 (27): 8214-8222. 10.1021/bi034379o.
Article
PubMed
CAS
Google Scholar
Park HC, Kang YH, Chun HJ, Koo JC, Cheong YH, Kim CY, Kim MC, Chung WS, Kim JC, Yoo JH, et al.: Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage. Plant Mol Biol. 2002, 50 (1): 59-69.
Article
PubMed
CAS
Google Scholar
Urdangarin MC, Norero NS, Broekaert WF, de lCL: A defensin gene expressed in sunflower inflorescence. Plant Physiology and Biochemistry. 2000, 38 (3): 253-258. 10.1016/S0981-9428(00)00737-3.
Article
CAS
Google Scholar
Karunanandaa B, Singh A, Kao TH: Characterization of a predominantly pistil-expressed gene encoding a gamma-thionin-like protein of Petunia inflata. Plant Mol Biol. 1994, 26 (1): 459-464. 10.1007/BF00039555.
Article
PubMed
CAS
Google Scholar
Hiruma K, Nishiuchi T, Kato T, Bednarek P, Okuno T, Schulze-Lefert P, Takano Y: Arabidopsis ENHANCED DISEASE RESISTANCE 1 is required for pathogen-induced expression of plant defensins in nonhost resistance and acts through interference of MYC2-mediated repressor function. Plant J. 2011
Google Scholar
Amien S, Kliwer I, Márton ML, Debener T, Geiger D, Becker D, Dresselhaus T: Defensin-Like ZmES4 Mediates Pollen Tube Burst in Maize via Opening of the Potassium Channel KZM1. PLoS Biol. 2010, 8 (6): e1000388-10.1371/journal.pbio.1000388.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nielsen ME, Lok F, Nielsen HB: Distinct developmental defense activations in barley embryos identified by transcriptome profiling. Plant Mol Biol. 2006, 61 (4-5): 589-601. 10.1007/s11103-006-0034-7.
Article
PubMed
CAS
Google Scholar
Franco OL, Murad AM, Leite JR, Mendes PAM, Prates MV, Bloch C: Identification of a cowpea gamma-thionin with bactericidal activity. FEBS J. 2006, 273 (15): 3489-3497. 10.1111/j.1742-4658.2006.05349.x.
Article
PubMed
CAS
Google Scholar
Segura A, Moreno M, Molina A, Garcia-Olmedo F: Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett. 1998, 435 (2-3): 159-162. 10.1016/S0014-5793(98)01060-6.
Article
PubMed
CAS
Google Scholar
Lin P, Wong JH, Ng TB: A defensin with highly potent antipathogenic activities from the seeds of purple pole bean. Biosci Rep. 2010, 30 (2): 101-109.
Article
CAS
Google Scholar
Aerts AM, Carmona-Gutierrez D, Lefevre S, Govaert G, Francois IE, Madeo F, Santos R, Cammue BP, Thevissen K: The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett. 2009, 583 (15): 2513-2516. 10.1016/j.febslet.2009.07.004.
Article
PubMed
CAS
Google Scholar
Tavares PM, Thevissen K, Cammue BP, Francois IE, Barreto-Bergter E, Taborda CP, Marques AF, Rodrigues ML, Nimrichter L: In vitro activity of the antifungal plant defensin RsAFP2 against Candida isolates and its in vivo efficacy in prophylactic murine models of candidiasis. Antimicrob Agents Chemother. 2008, 52 (12): 4522-4525. 10.1128/AAC.00448-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Games PD, Dos Santos IS, Mello EO, Diz MS, Carvalho AO, de Souza-Filho GA, Da Cunha M, Vasconcelos IM, Ferreira Bdos S, Gomes VM: Isolation, characterization and cloning of a cDNA encoding a new antifungal defensin from Phaseolus vulgaris L. seeds. Peptides. 2008, 29 (12): 2090-2100. 10.1016/j.peptides.2008.08.008.
Article
PubMed
CAS
Google Scholar
Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacón O, López Y, Rodriguez M, Castillo J, Pujol M, et al.: NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J. 2010, 8 (6): 678-690. 10.1111/j.1467-7652.2010.00501.x.
Article
PubMed
CAS
Google Scholar
Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I: Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet. 2002, 105 (6-7): 809-814. 10.1007/s00122-001-0817-9.
Article
PubMed
CAS
Google Scholar
van der Weerden NL, Hancock REW, Anderson MA: Permeabilization of Fungal Hyphae by the Plant Defensin NaD1 Occurs through a Cell Wall-dependent Process. J Biol Chem. 2010, 285 (48): 37513-37520. 10.1074/jbc.M110.134882.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jha S, Chattoo BB: Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res. 2010, 19 (3): 373-384. 10.1007/s11248-009-9315-7.
Article
PubMed
CAS
Google Scholar
Kovaleva V, Kiyamova R, Cramer R, Krynytskyy H, Gout I, Filonenko V, Gout R: Purification and molecular cloning of antimicrobial peptides from Scots pine seedlings. Peptides. 2009, 30 (12): 2136-2143. 10.1016/j.peptides.2009.08.007.
Article
PubMed
CAS
Google Scholar
Jha S, Tank HG, Prasad BD, Chattoo BB: Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res. 2009, 18 (1): 59-69. 10.1007/s11248-008-9196-1.
Article
PubMed
CAS
Google Scholar
Terras F, Schoofs H, De Bolle M, Van Leuven F, Rees S, Vanderleyden J, Cammue B, Broekaert W: Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L) seeds. Journal Biol Chem. 1992, 267 (22): 15301-15309.
CAS
Google Scholar
Bloch C, Richardson M: A new family of small (5 kD) protein inhibitors of insect alpha-amylase from seeds of sorghum (Sorghum bicolor (L.) Moench) have sequence homologies with wheat gamma-purothionins. FEBS Lett. 1991, 279: 101-104. 10.1016/0014-5793(91)80261-Z.
Article
PubMed
CAS
Google Scholar
Leung EH, Wong JH, Ng TB: Concurrent purification of two defense proteins from French bean seeds: a defensin-like antifungal peptide and a hemagglutinin. J Pept Sci. 2008, 14 (3): 349-353. 10.1002/psc.946.
Article
PubMed
CAS
Google Scholar
Ngai PH, Ng TB: Phaseococcin, an antifungal protein with antiproliferative and anti-HIV-1 reverse transcriptase activities from small scarlet runner beans. Biochem Cell Biol. 2005, 83 (2): 212-220. 10.1139/o05-037.
Article
PubMed
CAS
Google Scholar
Wong JH, Ng TB: Gymnin, a potent defensin-like antifungal peptide from the Yunnan bean (Gymnocladus chinensis Baill). Peptides. 2003, 24 (7): 963-968. 10.1016/S0196-9781(03)00192-X.
Article
PubMed
CAS
Google Scholar
Wong JH, Ng TB: Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides. 2005, 26 (7): 1120-1126. 10.1016/j.peptides.2005.01.003.
Article
PubMed
CAS
Google Scholar
Choi MS, Kim YH, Park HM, Seo BY, Jung JK, Kim ST, Kim MC, Shin DB, Yun HT, Choi IS, et al.: Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices. Mol Cells. 2009, 28 (2): 131-137. 10.1007/s10059-009-0117-9.
Article
PubMed
CAS
Google Scholar
Pelegrini PB, Lay FT, Murad AM, Anderson MA, Franco OL: Novel insights on the mechanism of action of alpha-amylase inhibitors from the plant defensin family. Proteins. 2008, 73 (3): 719-729. 10.1002/prot.22086.
Article
PubMed
CAS
Google Scholar
de Zélicourt A, Letousey P, Thoiron S, Campion C, Simoneau P, Elmorjani K, Marion D, Simier P, Delavault P: Ha-DEF1, a sunflower defensin, induces cell death in Orobanche parasitic plants. Planta. 2007, 226 (3): 592-600.
Article
CAS
Google Scholar
Mirouze M, Sels J, Richard O, Czernic P, Loubet S, Jacquier A, Francois IEJA, Cammue BPA, Lebrun M, Berthomieu P, et al.: A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J. 2006, 47 (3): 329-342. 10.1111/j.1365-313X.2006.02788.x.
Article
PubMed
CAS
Google Scholar
Silverstein KA, Graham MA, Paape TD, VandenBosch KA: Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol. 2005, 138 (2): 600-610. 10.1104/pp.105.060079.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM: Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol. 2000, 18 (12): 1307-1310. 10.1038/82436.
Article
PubMed
CAS
Google Scholar
Khan RS, Nakamura I, Mii M: Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep. 2011, 30 (6): 1041-1053. 10.1007/s00299-011-1011-4.
Article
PubMed
CAS
Google Scholar
Thomma BP, Cammue BP, Thevissen K: Mode of action of plant defensins suggests therapeutic potential. Curr Drug Targets Infect Disord. 2003, 3 (1): 1-8.
Article
PubMed
CAS
Google Scholar
Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J, et al.: Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell. 1995, 7 (5): 573-588.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schaaper WM, Posthuma GA, Plasman HH, Sijtsma L, Fant F, Borremans FA, Thevissen K, Broekaert WF, Meloen RH, van Amerongen A: Synthetic peptides derived from the beta2-beta3 loop of Raphanus sativus antifungal protein 2 that mimic the active site. J Pept Res. 2001, 57 (5): 409-418. 10.1034/j.1399-3011.2001.00842.x.
Article
PubMed
CAS
Google Scholar
De Samblanx GW, Fernandez del Carmen A, Sijtsma L, Plasman HH, Schaaper WM, Posthuma GA, Fant F, Meloen RH, Broekaert WF, van Amerongen A: Antifungal activity of synthetic 15-mer peptides based on the Rs-AFP2 (Raphanus sativus antifungal protein 2) sequence. Pept Res. 1996, 9 (6): 262-268.
PubMed
CAS
Google Scholar
Sagaram US, Pandurangi R, Kaur J, Smith TJ, Shah DM: Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS One. 2011, 6 (4): e18550-10.1371/journal.pone.0018550.
Article
PubMed
CAS
PubMed Central
Google Scholar
de Paula VS, Razzera G, Barreto-Bergter E, Almeida FC, Valente AP: Portrayal of complex dynamic properties of sugarcane defensin 5 by NMR: multiple motions associated with membrane interaction. Structure. 2011, 19 (1): 26-36. 10.1016/j.str.2010.11.011.
Article
PubMed
CAS
Google Scholar
de Medeiros LN, Angeli R, Sarzedas CG, Barreto-Bergter E, Valente AP, Kurtenbach E, Almeida FCL: Backbone dynamics of the antifungal Psd1 pea defensin and its correlation with membrane interaction by NMR spectroscopy. Biochim et Biophys Acta (BBA) - Biomembranes. 2010, 1798 (2): 105-113. 10.1016/j.bbamem.2009.07.013.
Article
CAS
Google Scholar
Kovaleva V, Krynytskyy H, Gout I, Gout R: Recombinant expression, affinity purification and functional characterization of Scots pine defensin 1. Appl Microbiol Biotechnol. 2010, 1-9.
Google Scholar
Dos Santos IS, Carvalho Ade O, de Souza-Filho GA, do Nascimento VV, Machado OL, Gomes VM: Purification of a defensin isolated from Vigna unguiculata seeds, its functional expression in Escherichia coli, and assessment of its insect alpha-amylase inhibitory activity. Protein Expr Purif. 2010, 71 (1): 8-15. 10.1016/j.pep.2009.11.008.
Article
PubMed
CAS
Google Scholar
Finkina EI, Shramova EI, Tagaev AA, Ovchinnikova TV: A novel defensin from the lentil Lens culinaris seeds. Biochem Biophys Res Commun. 2008, 371 (4): 860-865. 10.1016/j.bbrc.2008.04.161.
Article
PubMed
CAS
Google Scholar
Chen KC, Lin CY, Kuan CC, Sung HY, Chen CS: A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. J Agric Food Chem. 2002, 50 (25): 7258-7263. 10.1021/jf020527q.
Article
PubMed
CAS
Google Scholar
Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P: Plant defense peptides. Biopolymers. 1998, 47 (6): 479-491. 10.1002/(SICI)1097-0282(1998)47:6<479::AID-BIP6>3.0.CO;2-K.
Article
PubMed
CAS
Google Scholar
Thevissen K, Warnecke DC, Francois IE, Leipelt M, Heinz E, Ott C, Zahringer U, Thomma BP, Ferket KK, Cammue BP: Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem. 2004, 279 (6): 3900-3905.
Article
PubMed
CAS
Google Scholar
Chang S, Puryear J, Cairney J: A Simple and Efficient Method for Isolating RNA from Pine Trees. Plant Mol Biol Report. 1993, 11: 113-116. 10.1007/BF02670468.
Article
CAS
Google Scholar
Hall T: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. 41. Nucl Acids Symp Ser. 1999, 41: 95-98.
CAS
Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res. 1997, 25: 4876-4882. 10.1093/nar/25.24.4876.
Article
PubMed
CAS
PubMed Central
Google Scholar
Canutescu A, Dunbrack R: Arbodraw. 2006
Google Scholar
Krieger E, Koraimann G, Vriend G: Increasing the precision of comparative models with YASARA NOVA - a self-parameterizing force field. Proteins. 2002, 47: 393-402. 10.1002/prot.10104.
Article
PubMed
CAS
Google Scholar
Krieger E, Darden T, Nabuurs S, Finkelstein A, Vriend G: Making optimal use of empirical energy functions: force field parameterization in crystal space. Proteins. 2004, 57: 678-683. 10.1002/prot.20251.
Article
PubMed
CAS
Google Scholar
Schymkowitz JWH, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher F, Serrano L: Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc NatAcad Sci USA. 2005, 102 (29): 10147-10152. 10.1073/pnas.0501980102.
Article
CAS
Google Scholar
Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucl Acids Res. 2002, 30: 1-10. 10.1093/nar/30.1.1.
Article
Google Scholar
Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM: Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucl Acids Res. 2009, 37 (6): e45-10.1093/nar/gkp045.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schagger H, G VJ: Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987, 166: 368-379. 10.1016/0003-2697(87)90587-2.
Article
PubMed
CAS
Google Scholar
Broekaert W, Terras F, Cammue B, Vandereyden J: An automated quantitive assay for fungal growth inhibition. FEMS Microbiol Lett. 1990, 69: 55-60. 10.1111/j.1574-6968.1990.tb04174.x.
Article
CAS
Google Scholar