CDC: Sexually Transmitted Disease Surveillance. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention. 2010
Google Scholar
Mabey DC, Solomon AW, Foster A: Trachoma. Lancet. 2003, 362 (9379): 223-229. 10.1016/S0140-6736(03)13914-1.
Article
PubMed
Google Scholar
Caldwell HD, Kromhout J, Schachter J: Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun. 1981, 31 (3): 1161-1176.
PubMed
CAS
PubMed Central
Google Scholar
Bavoil P, Ohlin A, Schachter J: Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect Immun. 1984, 44 (2): 479-485.
PubMed
CAS
PubMed Central
Google Scholar
Stephens RS: Genomic autobiographies of Chlamydiae. Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. Edited by: Stephens RS. 1999, Washington, DC: American Society for Microbiology, 6-26.
Google Scholar
Brunelle BW, Nicholson TL, Stephens RS: Microarray-based genomic surveying of gene polymorphisms in Chlamydia trachomatis. Genome Biol. 2004, 5 (6): R42-10.1186/gb-2004-5-6-r42.
Article
PubMed
PubMed Central
Google Scholar
Jeffrey BM, Suchland RJ, Quinn KL, Davidson JR, Stamm WE, Rockey DD: Genome sequencing of recent clinical Chlamydia trachomatis strains identifies loci associated with tissue tropism and regions of apparent recombination. Infect Immun. 2010, 78 (6): 2544-2553. 10.1128/IAI.01324-09.
Article
PubMed
CAS
PubMed Central
Google Scholar
Brunelle BW, Sensabaugh GF: The ompA gene in Chlamydia trachomatis differs in phylogeny and rate of evolution from other regions of the genome. Infect Immun. 2006, 74 (1): 578-585. 10.1128/IAI.74.1.578-585.2006.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gomes JP, Nunes A, Bruno WJ, Borrego MJ, Florindo C, Dean D: Polymorphisms in the nine polymorphic membrane proteins of Chlamydia trachomatis across all serovars: evidence for serovar Da recombination and correlation with tissue tropism. J Bacteriol. 2006, 188 (1): 275-286. 10.1128/JB.188.1.275-286.2006.
Article
PubMed
CAS
PubMed Central
Google Scholar
Stothard DR, Toth GA, Batteiger BE: Polymorphic membrane protein H has evolved in parallel with the three disease-causing groups of Chlamydia trachomatis. Infect Immun. 2003, 71 (3): 1200-1208. 10.1128/IAI.71.3.1200-1208.2003.
Article
PubMed
CAS
PubMed Central
Google Scholar
Stothard DR, Boguslawski G, Jones RB: Phylogenetic analysis of the Chlamydia trachomatis major outer membrane protein and examination of potential pathogenic determinants. Infect Immun. 1998, 66 (8): 3618-3625.
PubMed
CAS
PubMed Central
Google Scholar
Kubo A, Stephens RS: Characterization and functional analysis of PorB, a Chlamydia porin and neutralizing target. Mol Microbiol. 2000, 38 (4): 772-780. 10.1046/j.1365-2958.2000.02167.x.
Article
PubMed
CAS
Google Scholar
Kawa DE, Stephens RS: Antigenic topology of chlamydial PorB protein and identification of targets for immune neutralization of infectivity. J Immunol. 2002, 168 (10): 5184-5191.
Article
PubMed
CAS
Google Scholar
Fitch WM, Peterson EM, de la Maza LM: Phylogenetic analysis of the outer-membrane-protein genes of Chlamydiae, and its implication for vaccine development. Mol Biol Evol. 1993, 10 (4): 892-913.
PubMed
CAS
Google Scholar
Feil E, Zhou J, Maynard Smith J, Spratt BG: A comparison of the nucleotide sequences of the adk and recA genes of pathogenic and commensal Neisseria species: evidence for extensive interspecies recombination within adk. J Mol Evol. 1996, 43 (6): 631-640. 10.1007/BF02202111.
Article
PubMed
CAS
Google Scholar
Gomes JP, Bruno WJ, Nunes A, Santos N, Florindo C, Borrego MJ, Dean D: Evolution of Chlamydia trachomatis diversity occurs by widespread interstrain recombination involving hotspots. Genome Res. 2007, 17 (1): 50-60.
Article
PubMed
CAS
PubMed Central
Google Scholar
Joseph SJ, Didelot X, Gandhi K, Dean D, Read TD: Interplay of recombination and selection in the genomes of Chlamydia trachomatis. Biol Direct. 2011, 6: 28-10.1186/1745-6150-6-28.
Article
PubMed
PubMed Central
Google Scholar
Stephens RS: Chlamydial evolution: a billion years and counting. Chlamydial Infections, Proceedings of the Tenth International Symposium on Human Chlamydial Infections: 16-21 June 2002: 2002. 2002, Antalya, Turkey: International Chlamydia Symposium, 3-16.
Google Scholar
Lampe MF, Suchland RJ, Stamm WE: Nucleotide sequence of the variable domains within the major outer membrane protein gene from serovariants of Chlamydia trachomatis. Infect Immun. 1993, 61 (1): 213-219.
PubMed
CAS
PubMed Central
Google Scholar
Brunham R, Yang C, Maclean I, Kimani J, Maitha G, Plummer F: Chlamydia trachomatis from individuals in a sexually transmitted disease core group exhibit frequent sequence variation in the major outer membrane protein (omp1) gene. J Clin Invest. 1994, 94 (1): 458-463. 10.1172/JCI117347.
Article
PubMed
CAS
PubMed Central
Google Scholar
Millman KL, Tavare S, Dean D: Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism. J Bacteriol. 2001, 183 (20): 5997-6008. 10.1128/JB.183.20.5997-6008.2001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Millman K, Black CM, Johnson RE, Stamm WE, Jones RB, Hook EW, Martin DH, Bolan G, Tavare S, Dean D: Population-based genetic and evolutionary analysis of Chlamydia trachomatis urogenital strain variation in the United States. J Bacteriol. 2004, 186 (8): 2457-2465. 10.1128/JB.186.8.2457-2465.2004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dugan J, Rockey DD, Jones L, Andersen AA: Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv-like gene. Antimicrob Agents Chemother. 2004, 48 (10): 3989-3995. 10.1128/AAC.48.10.3989-3995.2004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yang Z, Yoder AD: Estimation of the transition/transversion rate bias and species sampling. J Mol Evol. 1999, 48 (3): 274-283. 10.1007/PL00006470.
Article
PubMed
CAS
Google Scholar
Stephens RS, Sanchez-Pescador R, Wagar EA, Inouye C, Urdea MS: Diversity of Chlamydia trachomatis major outer membrane protein genes. J Bacteriol. 1987, 169 (9): 3879-3885.
PubMed
CAS
PubMed Central
Google Scholar
Nunes A, Nogueira PJ, Borrego MJ, Gomes JP: Chlamydia trachomatis diversity viewed as a tissue-specific coevolutionary arms race. Genome Biol. 2008, 9 (10): R153-10.1186/gb-2008-9-10-r153.
Article
PubMed
PubMed Central
Google Scholar
Santoyo G, Romero D: Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiol Rev. 2005, 29 (2): 169-183.
Article
PubMed
CAS
Google Scholar
Somboonna N, Wan R, Ojcius DM, Pettengill MA, Joseph SJ, Chang A, Hsu R, Read TD, Dean D: Hypervirulent Chlamydia trachomatis clinical strain is a recombinant between lymphogranuloma venereum (L(2)) and D lineages. MBio. 2011, 2 (3): e00045-e00011.
Article
PubMed
PubMed Central
Google Scholar
Jordan IK, Makarova KS, Wolf YI, Koonin EV: Gene conversions in genes encoding outer-membrane proteins in H. pylori and C. pneumoniae. Trends Genet. 2001, 17 (1): 7-10. 10.1016/S0168-9525(00)02151-X.
Article
PubMed
CAS
Google Scholar
Futse JE, Brayton KA, Knowles DP, Palmer GH: Structural basis for segmental gene conversion in generation of Anaplasma marginale outer membrane protein variants. Mol Microbiol. 2005, 57 (1): 212-221. 10.1111/j.1365-2958.2005.04670.x.
Article
PubMed
CAS
Google Scholar
Nystedt B, Frank AC, Thollesson M, Andersson SG: Diversifying selection and concerted evolution of a type IV secretion system in Bartonella. Mol Biol Evol. 2008, 25 (2): 287-300. 10.1093/molbev/msm252.
Article
PubMed
CAS
Google Scholar
Rich SM, Sawyer SA, Barbour AG: Antigen polymorphism in Borrelia hermsii, a clonal pathogenic bacterium. Proc Natl Acad Sci USA. 2001, 98 (26): 15038-15043. 10.1073/pnas.071042098.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang JR, Norris SJ: Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect Immun. 1998, 66 (8): 3698-3704.
PubMed
CAS
PubMed Central
Google Scholar
Noormohammadi AH, Markham PF, Kanci A, Whithear KG, Browning GF: A novel mechanism for control of antigenic variation in the haemagglutinin gene family of Mycoplasma synoviae. Mol Microbiol. 2000, 35 (4): 911-923. 10.1046/j.1365-2958.2000.01766.x.
Article
PubMed
CAS
Google Scholar
Kline KA, Sechman EV, Skaar EP, Seifert HS: Recombination, repair and replication in the pathogenic Neisseriae: the 3 R's of molecular genetics of two human-specific bacterial pathogens. Mol Microbiol. 2003, 50 (1): 3-13. 10.1046/j.1365-2958.2003.03679.x.
Article
PubMed
CAS
Google Scholar
Haas R, Meyer TF: The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell. 1986, 44 (1): 107-115. 10.1016/0092-8674(86)90489-7.
Article
PubMed
CAS
Google Scholar
Liao D: Concerted evolution: molecular mechanism and biological implications. Am J Hum Genet. 1999, 64 (1): 24-30. 10.1086/302221.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liao D: Gene conversion drives within genic sequences: concerted evolution of ribosomal RNA genes in bacteria and archaea. J Mol Evol. 2000, 51 (4): 305-317.
PubMed
CAS
Google Scholar
Santoyo G, Martinez-Salazar JM, Rodriguez C, Romero D: Gene conversion tracts associated with crossovers in Rhizobium etli. J Bacteriol. 2005, 187 (12): 4116-4126. 10.1128/JB.187.12.4116-4126.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fehlner-Gardiner C, Roshick C, Carlson JH, Hughes S, Belland RJ, Caldwell HD, McClarty G: Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase. J Biol Chem. 2002, 277 (30): 26893-26903. 10.1074/jbc.M203937200.
Article
PubMed
CAS
Google Scholar
Caldwell HD, Wood H, Crane D, Bailey R, Jones RB, Mabey D, Maclean I, Mohammed Z, Peeling R, Roshick C, et al.: Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J Clin Invest. 2003, 111 (11): 1757-1769. 10.1172/JCI17993.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sharp PM, Li WH: The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol. 1987, 4 (3): 222-230.
PubMed
CAS
Google Scholar
Mira A, Ochman H: Gene location and bacterial sequence divergence. Mol Biol Evol. 2002, 19 (8): 1350-1358. 10.1093/oxfordjournals.molbev.a004196.
Article
PubMed
CAS
Google Scholar
Nunes A, Gomes JP, Mead S, Florindo C, Correia H, Borrego MJ, Dean D: Comparative expression profiling of the Chlamydia trachomatis pmp gene family for clinical and reference strains. PLoS One. 2007, 2 (9): e878-10.1371/journal.pone.0000878.
Article
PubMed
PubMed Central
Google Scholar
Hudson RE, Bergthorsson U, Ochman H: Transcription increases multiple spontaneous point mutations in Salmonella enterica. Nucleic Acids Res. 2003, 31 (15): 4517-4522. 10.1093/nar/gkg651.
Article
PubMed
CAS
Google Scholar
Maki H: Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu Rev Genet. 2002, 36: 279-303. 10.1146/annurev.genet.36.042602.094806.
Article
PubMed
CAS
Google Scholar
Wright BE: A biochemical mechanism for nonrandom mutations and evolution. J Bacteriol. 2000, 182 (11): 2993-3001. 10.1128/JB.182.11.2993-3001.2000.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wright BE: Stress-directed adaptive mutations and evolution. Mol Microbiol. 2004, 52 (3): 643-650. 10.1111/j.1365-2958.2004.04012.x.
Article
PubMed
CAS
Google Scholar
Aguilera A: The connection between transcription and genomic instability. EMBO J. 2002, 21 (3): 195-201.
Article
PubMed
CAS
PubMed Central
Google Scholar
Beletskii A, Bhagwat AS: Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc Natl Acad Sci USA. 1996, 93 (24): 13919-13924. 10.1073/pnas.93.24.13919.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu X, Hou J, Liu J: Chlamydial DNA polymerase I can bypass lesions in vitro. Biochem Biophys Res Commun. 2006, 345 (3): 1083-1091. 10.1016/j.bbrc.2006.05.021.
Article
PubMed
CAS
Google Scholar
Davis LG, Kuehl WM, Battey JF: Basic Methods in Molecular Biology. Edited by: Davis LG, Kuehl WM, Battey JF. 1994, Norwalk, CT: Appleton and Lange, 16-21. 2
Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, et al.: Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 2000, 28 (6): 1397-1406. 10.1093/nar/28.6.1397.
Article
PubMed
CAS
PubMed Central
Google Scholar
Thompson JD, Gibson TJ, Higgins DG: Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2002, Chapter 2 (Unit 2 3):
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24 (8): 1596-1599. 10.1093/molbev/msm092.
Article
PubMed
CAS
Google Scholar
Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25 (11): 1451-1452.