Wang W, Vinocur B, Altman A: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003, 218: 1-14. 10.1007/s00425-003-1105-5.
Article
PubMed
CAS
Google Scholar
Munns R: Genes and salt tolerance: bringing them together. New Phytol. 2005, 167: 645-663. 10.1111/j.1469-8137.2005.01487.x.
Article
PubMed
CAS
Google Scholar
Food and Agriculture Organization, Rome: World agriculture: towards 2015/2030. Summary report. 2002, [http://www.fao.org/docrep/004/y3557e/y3557e00.htm]
Google Scholar
Deyholos MK: Making the most of drought and salinity transcriptomics. Plant Cell Environ. 2010, 33: 648-654. 10.1111/j.1365-3040.2009.02092.x.
Article
PubMed
CAS
Google Scholar
Hirayama T, Shinozaki K: Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 2010, 61: 1041-1052. 10.1111/j.1365-313X.2010.04124.x.
Article
PubMed
CAS
Google Scholar
Chinnusamy V, Schumaker K, Zhu JK: Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot. 2004, 55: 225-236.
Article
PubMed
CAS
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006, 57: 781-803. 10.1146/annurev.arplant.57.032905.105444.
Article
PubMed
CAS
Google Scholar
Bartels D, Sunkar R: Drought and salt tolerance in plants. Crit Rev Plant Sci. 2005, 24: 23-58. 10.1080/07352680590910410.
Article
CAS
Google Scholar
Munns R, Tester M: Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008, 59: 651-681. 10.1146/annurev.arplant.59.032607.092911.
Article
PubMed
CAS
Google Scholar
Pardo JM: Biotechnology of water and salinity stress tolerance. Curr Opin Biotechnol. 2010, 21: 185-196. 10.1016/j.copbio.2010.02.005.
Article
PubMed
CAS
Google Scholar
Nakashima K, Ito Y, Yamaguchi-Shinozaki K: Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 2009, 149: 88-95. 10.1104/pp.108.129791.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hussain SS, Kayani MA, Amjad M: Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog. 2011, 27: 297-306. 10.1002/btpr.514.
Article
PubMed
CAS
Google Scholar
Peleg Z, Apse MP, Blumwald E: Engineering salinity and water-stress tolerance in crop plants. Adv Bot Res. 2011, 57: 405-443.
Article
CAS
Google Scholar
Miller J, McLachlan AD, Klug A: Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985, 4: 1609-1614.
PubMed
CAS
PubMed Central
Google Scholar
Klug A: The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem. 2010, 79: 213-231. 10.1146/annurev-biochem-010909-095056.
Article
PubMed
CAS
Google Scholar
Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H: Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J. 2003, 36: 830-841. 10.1046/j.1365-313X.2003.01924.x.
Article
PubMed
CAS
Google Scholar
Englbrecht CC, Schoof H, Böhm S: Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics. 2004, 5: 39-10.1186/1471-2164-5-39.
Article
PubMed
PubMed Central
Google Scholar
Agarwal P, Arora R, Ray S, Singh A, Singh V, Takatsuji H, Kapoor S, Tyagi A: Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol. 2007, 65: 467-485. 10.1007/s11103-007-9199-y.
Article
PubMed
CAS
Google Scholar
Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K: Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 2004, 136: 2734-2746. 10.1104/pp.104.046599.
Article
PubMed
CAS
PubMed Central
Google Scholar
Huang J, Yang X, Wang M-M, Tang H-J, Ding L-Y, Shen Y, Zhang H-S: A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochim Biophys Acta Gene Struct Expression. 2007, 1769: 220-227. 10.1016/j.bbaexp.2007.02.006.
Article
CAS
Google Scholar
Pan L, Yang Q, Chi X, Chen M, He Y, Yu S: AhZFP1, a cDNA encoding C2H2-type zinc finger protein, induced by salt stress in peanut (Arachis hypogaea L.). Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on June 18-20. 2010, 1-7.
Google Scholar
An Y, Wang Y, Lou L, Zheng T, Qu G-Z: A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance. J Plant Res. 2011, 124: 689-697. 10.1007/s10265-011-0403-4.
Article
PubMed
CAS
Google Scholar
Gourcilleau D, Lenne C, Armenise C, Moulia B, Julien JL, Bronner G, Leblanc-Fournier N: Phylogenetic study of plant Q-type C2H2 zinc finger proteins and expression analysis of poplar genes in response to osmotic, cold and mechanical stresses. DNA Res. 2011, 18: 77-92. 10.1093/dnares/dsr001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sun S-J, Guo S-Q, Yang X, Bao Y-M, Tang H-J, Sun H, Huang J, Zhang H-S: Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot. 2010, 61: 2807-2818. 10.1093/jxb/erq120.
Article
PubMed
CAS
PubMed Central
Google Scholar
Xu S, Wang X, Chen J: Zinc finger protein 1 (ThZF1) from salt cress Thellungiella halophila is a Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Rep. 2007, 26: 497-506. 10.1007/s00299-006-0248-9.
Article
PubMed
CAS
Google Scholar
Opipari AW, Boguski MS, Dixit VM: The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem. 1990, 265: 14705-14708.
PubMed
CAS
Google Scholar
Linnen JM, Bailey CP, Weeks DL: Two related localized mRNAs from Xenopus laevis encode ubiquitin-like fusion proteins. Gene. 1993, 128: 181-188. 10.1016/0378-1119(93)90561-G.
Article
PubMed
CAS
Google Scholar
Mukhopadhyay A, Vij S, Tyagi AK: Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA. 2004, 101: 6309-6314. 10.1073/pnas.0401572101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vij S, Tyagi AK: Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol Genet Genomics. 2006, 276: 565-575. 10.1007/s00438-006-0165-1.
Article
PubMed
CAS
Google Scholar
Kang M, Fokar M, Abdelmageed H, Allen R: Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Mol Biol. 2011, 75: 451-466. 10.1007/s11103-011-9748-2.
Article
PubMed
CAS
Google Scholar
Ben Saad R, Zouari N, Ben Ramdhan W, Azaza J, Meynard D, Guiderdoni E, Hassairi A: Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol. 2010, 72: 171-190. 10.1007/s11103-009-9560-4.
Article
PubMed
CAS
Google Scholar
Giri J, Vij S, Dansana PK, Tyagi AK: Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol. 2011, 191: 721-732. 10.1111/j.1469-8137.2011.03740.x.
Article
PubMed
CAS
Google Scholar
Huang J, Wang M-M, Jiang Y, Bao Y-M, Huang X, Sun H, Xu D-Q, Lan H-X, Zhang H-S: Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene. 2008, 420: 135-144. 10.1016/j.gene.2008.05.019.
Article
PubMed
CAS
Google Scholar
Xuan N, Jin Y, Zhang H, Xie Y, Liu Y, Wang G: A putative maize zinc-finger protein gene, ZmAN13, participates in abiotic stress response. Plant Cell Tiss Org Cult. 2011, 107: 1-12. 10.1007/s11240-011-9950-6.
Article
Google Scholar
Dixit AR, Dhankher OP: A novel stress-associated protein 'AtSAP10' from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. PLoS ONE. 2011, 6: e20921-10.1371/journal.pone.0020921.
Article
PubMed
CAS
PubMed Central
Google Scholar
Engels JG, Rink R, Jensen K: Stress tolerance and biotic interactions determine plant zonation patterns in estuarine marshes during seedling emergence and early establishment. J Ecol. 2011, 99: 277-287. 10.1111/j.1365-2745.2010.01745.x.
Article
Google Scholar
Baldwin JC, Dombrowski JE: Evaluation of Lolium temulentum as a model grass species for the study of salinity stress by PCR-based subtractive suppression hybridization analysis. Plant Sci. 2006, 171: 459-469. 10.1016/j.plantsci.2006.05.003.
Article
PubMed
CAS
Google Scholar
Wang M-B, Matthews PR, Upadhyaya MN, Waterhouse PM: Improved vectors for Agrobacterium tumefaciens-mediated plant transformation. Acta Hortic. 1998, 461: 401-407.
Article
CAS
Google Scholar
Wang MB, Upadhyaya MN, Brettell RIS, Waterhouse PM: Intron mediated improvement of a selectable marker gene for plant transformation using Agrobacterium tumefaciens. J Genet Breeding. 1997, 51: 325-334.
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Biol. 1990, 215: 403-410.
Article
CAS
Google Scholar
Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, et al: CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res. 2009, 37: D205-D210. 10.1093/nar/gkn845.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, et al: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36: W465-469. 10.1093/nar/gkn180.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Edited by: Krawetz S, Misener S. 2000, Totowa, NJ: Humana Press, 365-386.
Google Scholar
Molecular Cloning, A Laboratory Manual. Edited by: Sambrook J, Russel DW. 2001, Cold Spring Harbor, New York: Cold Spring Harbor Press
Dalton SJ: Plant regeneration from cell suspension protoplasts of Festuca arundinacea Schreb, Lolium perenne L and Lolium multiflorum Lam. Plant Cell Tiss Org Cult. 1988, 12: 137-140. 10.1007/BF00040075.
Article
Google Scholar
Hofgen R, Willmitzer L: Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 1988, 16: 9877-10.1093/nar/16.20.9877.
Article
PubMed
CAS
PubMed Central
Google Scholar
Agro Induction Protocol.doc. [http://plant-tc.cfans.umn.edu/listserv/2002/log0206/msg00166.html]
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al: The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009, 55: 611-622. 10.1373/clinchem.2008.112797.
Article
PubMed
CAS
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
PubMed
CAS
Google Scholar
Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000, 7: 203-214. 10.1089/10665270050081478.
Article
PubMed
CAS
Google Scholar
Childs KL, Hamilton JP, Zhu W, Ly E, Cheung F, Wu H, Rabinowicz PD, Town CD, Buell CR, Chan AP: The TIGR plant transcript assemblies database. Nucleic Acids Res. 2007, 35: D846-851. 10.1093/nar/gkl785.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kanneganti V, Gupta AK: Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol. 2008, 66: 445-462. 10.1007/s11103-007-9284-2.
Article
PubMed
CAS
Google Scholar
Hu C-AA, Delauney AJ, Verma PS: A bifunctional enzyme (Δl-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA. 1992, 89: 9354-9358. 10.1073/pnas.89.19.9354.
Article
PubMed
CAS
PubMed Central
Google Scholar
Delauney AJ, Verma DPS: Proline biosynthesis and osmoregulation in plants. Plant J. 1993, 4: 215-223. 10.1046/j.1365-313X.1993.04020215.x.
Article
CAS
Google Scholar
Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K: Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 1997, 38: 1095-1102.
Article
PubMed
CAS
Google Scholar
Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr Sci. 2005, 88: 424-438.
CAS
Google Scholar
Szabados L, Savouré A: Proline: a multifunctional amino acid. Trends Plant Sci. 2010, 15: 89-97. 10.1016/j.tplants.2009.11.009.
Article
PubMed
CAS
Google Scholar
Man D, Bao Y-X, Han L-B: Drought tolerance associated with proline and hormone metabolism in two tall fescue cultivars. HortScience. 2011, 46: 1027-1032.
Google Scholar
Covic L, Silva NF, Lew RR: Functional characterization of ARAKIN (ATMEKK1): a possible mediator in an osmotic stress response pathway in higher plants. Biochim Biophys Acta Gene Regul Mech. 1999, 1451: 242-254.
CAS
Google Scholar
Westfall PJ, Patterson JC, Chen RE, Thorner J: Stress resistance and signal fidelity independent of nuclear MAPK function. Proc Natl Acad Sci USA. 2008, 105: 12212-12217. 10.1073/pnas.0805797105.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K: A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA. 1996, 93: 765-769. 10.1073/pnas.93.2.765.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pitzschke A, Forzani C, Hirt H: Forum Review: Reactive oxygen species signaling in plants. Antioxid Redox Signal. 2006, 8: 1757-1764. 10.1089/ars.2006.8.1757.
Article
PubMed
CAS
Google Scholar
Van Breusegem F, Dat JF: Reactive oxygen species in plant cell death. Plant Physiol. 2006, 141: 384-390. 10.1104/pp.106.078295.
Article
PubMed
CAS
PubMed Central
Google Scholar
Spiteller G: The relationship between changes in the cell wall, lipid peroxidation, proliferation, senescence and cell death. Physiol Plant. 2003, 119: 5-18. 10.1034/j.1399-3054.2003.00097.x.
Article
CAS
Google Scholar
Roy P, Roy SK, Mitra A, Kulkarni AP: Superoxide generation by lipoxygenase in the presence of NADH and NADPH. Biochim Biophys Acta Lipids Lipid Met. 1994, 1214: 171-179. 10.1016/0005-2760(94)90041-8.
Article
CAS
Google Scholar
Needleman P, Truk J, Jakschik BA, Morrison AR, Lefkowith JB: Arachidonic Acid Metabolism. Annu Rev Biochem. 1986, 55: 69-102. 10.1146/annurev.bi.55.070186.000441.
Article
PubMed
CAS
Google Scholar
Kreps JA: Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 2002, 130: 2129-2141. 10.1104/pp.008532.
Article
PubMed
CAS
PubMed Central
Google Scholar
Shenton D: Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J Biol Chem. 2006, 281: 29011-29021. 10.1074/jbc.M601545200.
Article
PubMed
CAS
Google Scholar
Rausell A, Kanhonou R, Yenush L, Serrano R, Ros R: The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. Plant J. 2003, 34: 257-267. 10.1046/j.1365-313X.2003.01719.x.
Article
PubMed
CAS
Google Scholar
Gu R, Fonseca S, Puskas LG, Hackler LJ, Zvara A, Dudits D, Pais MS: Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol. 2004, 24: 265-276. 10.1093/treephys/24.3.265.
Article
PubMed
CAS
Google Scholar
Diédhiou CJ, Popova OV, Dietz KJ, Golldack D: The SUI-homologous translation initiation factor eIF-1 is involved in regulation of ion homeostasis in rice. Plant Biol. 2008, 10: 298-309. 10.1111/j.1438-8677.2008.00037.x.
Article
PubMed
Google Scholar
Zhu J-K: Plant salt tolerance. Trends Plant Sci. 2001, 6: 66-71. 10.1016/S1360-1385(00)01838-0.
Article
PubMed
CAS
Google Scholar
Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ: Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol. 2000, 51: 463-499. 10.1146/annurev.arplant.51.1.463.
Article
PubMed
CAS
Google Scholar
Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM: p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003, 11: 577-590. 10.1016/S1097-2765(03)00050-9.
Article
PubMed
CAS
Google Scholar
Morselli E, Galluzzi L, Kroemer G: Mechanisms of p53-mediated mitochondrial membrane permeabilization. Cell Res. 2008, 18: 708-710. 10.1038/cr.2008.77.
Article
PubMed
CAS
Google Scholar
Zhou Y, Lee J, Reno CM, Sun C, Park SW, Chung J, Fisher SJ, White MF, Biddinger SB, Ozcan U: Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction. Nat Med. 2011, 17: 356-365. 10.1038/nm.2293.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yoshida H, Uemura A, Mori K: pXBP1(U), a negative regulator of the unfolded protein response activator pXBP1(S), targets ATF6 but not ATF4 in proteasome-mediated degradation. Cell Struct Funct. 2009, 34: 1-10. 10.1247/csf.06028.
Article
PubMed
CAS
Google Scholar
Hishiya A, Lemura S, Natsume T, Takayama S, Ikeda K, Watanabe K: A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy. EMBO J. 2006, 25: 554-564. 10.1038/sj.emboj.7600945.
Article
PubMed
CAS
PubMed Central
Google Scholar
Huang J, Teng L, Li L, Liu T, Chen D, Xu LG, Zhai Z, Shu HB: ZnF216 is an A20-like and IκB kinase γ-interacting inhibitor of NFκB activation. J Biol Chem. 2004, 279: 16847-16853. 10.1074/jbc.M309491200.
Article
PubMed
CAS
Google Scholar
Zhang Y, Mian MA, Chekhovskiy K, So S, Kupfer D, Lai H, Roe BA: Differential gene expression in Festuca under heat stress conditions. J Exp Bot. 2005, 56: 897-907. 10.1093/jxb/eri082.
Article
PubMed
CAS
Google Scholar