Baltgalvis KA, White K, Li W, Claypool MD, Lang W, Alcantara R, Singh BK, Friera AM, McLaughlin J, Hansen D, McCaughey K, Nguyen H, Smith IJ, Godinez G, Shaw SJ, Goff D, Singh R, Markovtsov V, Sun T-Q, Jenkins Y, Uy G, Li Y, Pan A, Gururaja T, Lau D, Park G, Hitoshi Y, Payan DG, Kinsella TM: Exercise performance and vascular insufficiency improve with AMPK activation in high-fat diet-fed mice. Am J Physiol Heart Circ Physiol. 2014, 306 (8): H1128-H1145. 10.1152/ajpheart.00839.2013.
Article
PubMed
CAS
PubMed Central
Google Scholar
El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000, 275 (1): 223-228. 10.1074/jbc.275.1.223.
Article
PubMed
CAS
Google Scholar
Owen M, Doran E, Halestrap A: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000, 3: 607-614.
Article
Google Scholar
Jenkins Y, Sun T-Q, Markovtsov V, Foretz M, Li W, Nguyen H, Li Y, Pan A, Uy G, Gross L, Baltgalvis K, Yung SL, Gururaja T, Kinoshita T, Owyang A, Smith IJ, McCaughey K, White K, Godinez G, Alcantara R, Choy C, Ren H, Basile R, Sweeny DJ, Xu X, Issakani SD, Carroll DC, Goff DA, Shaw SJ, Singh R, et al: AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes. PLoS One. 2013, 8 (12): e81870-10.1371/journal.pone.0081870.
Article
PubMed
PubMed Central
Google Scholar
Bailey CJ, Turner RC: Metformin. N Engl J Med. 1996, 334 (9): 574-579. 10.1056/NEJM199602293340906.
Article
PubMed
CAS
Google Scholar
Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B: Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010, 120 (7): 2355-2369. 10.1172/JCI40671.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI: Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000, 49 (12): 2063-2069. 10.2337/diabetes.49.12.2063.
Article
PubMed
CAS
PubMed Central
Google Scholar
Natali A, Ferrannini E: Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia. 2006, 49 (3): 434-441. 10.1007/s00125-006-0141-7.
Article
PubMed
CAS
Google Scholar
Phielix E, Szendroedi J, Roden M: The role of metformin and thiazolidinediones in the regulation of hepatic glucose metabolism and its clinical impact. Trends Pharmacol Sci. 2011, 32 (10): 607-616. 10.1016/j.tips.2011.06.006.
Article
PubMed
CAS
Google Scholar
Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Sci (New York, NY). 2005, 310 (5754): 1642-1646. 10.1126/science.1120781.
Article
CAS
Google Scholar
Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ: Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature. 2013, 494 (7436): 256-260. 10.1038/nature11808.
Article
PubMed
CAS
PubMed Central
Google Scholar
Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez J-P, Lee H-Y, Cline GW, Samuel VT, Kibbey RG, Shulman GI: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014, 510 (7506): 542-546. 10.1038/nature13270.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen Z-P, Neill HM, Ford RJ, Palanivel R, O'Brien M, Hardie DG, Macaulay SL, Schertzer JD, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR, O&apos: Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med. 2013, 19 (12): 1649-1654. 10.1038/nm.3372.
Article
PubMed
CAS
Google Scholar
Evans A, DeHaven C, Barrett T, Mitchell M, Milgram E: Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem. 2009, 81 (16): 6656-6667. 10.1021/ac901536h.
Article
PubMed
CAS
Google Scholar
Lawton K, Berger A, Mitchell M, Milgram K, Evans A, Guo L, Hanson R, Kalhan S, Ryals J, Milburn M: Analysis of the adult human plasma metabolome. Pharmacogenomics. 2008, 9 (4): 383-397. 10.2217/14622416.9.4.383.
Article
PubMed
CAS
Google Scholar
Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW, He Y, Bigner DD, Vogelstein B, Yan H: Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. PNAS. 2011, 108 (8): 3270-3265. 10.1073/pnas.1019393108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Glucophage/Glucophage XR Insert. Available at [http://packageinserts.bms.com/pi/pi_glucophage_xr.pdf]
Lodhi IJ, Semenkovich CF: Peroxisomes: a Nexus for Lipid Metabolism and Cellular Signaling. Cell Metab. 2014, 4 (19): 380-392.
Article
Google Scholar
Jessen N, Sundelin EI, Moller AB: AMP kinase in exercise adaptation of skeletal muscle. Drug Discov Today. 2014, 19 (7): 999-1002. 10.1016/j.drudis.2014.03.009.
Article
PubMed
CAS
Google Scholar
Jørgensen SB, Richter EA, Wojtaszewski JFP: Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol. 2006, 574 (Pt 1): 17-31.
Article
PubMed
PubMed Central
Google Scholar
Musi N, Yu H, Goodyear LJ: AMP-activated protein kinase regulation and action in skeletal muscle during exercise. Biochem Soc Trans. 2003, 31 (Pt 1): 191-195.
Article
PubMed
CAS
Google Scholar
Horowitz JF, Klein S: Lipid metabolism during endurance exercise. Am J Clin Nutr. 2000, 72 (2 Suppl): 558S-563S.
PubMed
CAS
Google Scholar
Kiens B: Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev. 2006, 86 (1): 205-243. 10.1152/physrev.00023.2004.
Article
PubMed
CAS
Google Scholar
Egan B, Zierath JR: Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013, 17 (2): 162-184. 10.1016/j.cmet.2012.12.012.
Article
PubMed
CAS
Google Scholar
Alsted TJ, Nybo L, Schweiger M, Fledelius C, Jacobsen P, Zimmermann R, Zechner R, Kiens B: Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training. Am J Physiol Endocrinol Metab. 2009, 296 (3): E445-453.
Article
PubMed
CAS
Google Scholar
Brechtel K, Niess AM, Machann J, Rett K, Schick F, Claussen CD, Dickhuth HH, Haering HU, Jacob S: Utilisation of intramyocellular lipids (IMCLs) during exercise as assessed by proton magnetic resonance spectroscopy (1H-MRS). Horm Metab Res. 2001, 33 (2): 63-66. 10.1055/s-2001-12407.
Article
PubMed
CAS
Google Scholar
Hurley BF, Nemeth PM, Martin WH, Hagberg JM, Dalsky GP, Holloszy JO: Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol. 1986, 60 (2): 562-567.
PubMed
CAS
Google Scholar
Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ: Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes. 2002, 51 (7): 2074-2081. 10.2337/diabetes.51.7.2074.
Article
PubMed
CAS
Google Scholar
Ouyang J, Parakhia RA, Ochs RS: Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem. 2011, 286 (1): 1-11. 10.1074/jbc.M110.121806.
Article
PubMed
CAS
PubMed Central
Google Scholar
Corominas-Faja B, Quirantes-Piné R, Oliveras-Ferraros C, Vazquez-Martin A, Cufí S, Martin-Castillo B, Micol V, Joven J, Segura-Carretero A, Menendez JA: Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs. Aging. 2012, 4 (7): 480-498.
PubMed
CAS
PubMed Central
Google Scholar